2024屆貴州省貴陽市普通中學高三入學考試數(shù)學試題試卷_第1頁
2024屆貴州省貴陽市普通中學高三入學考試數(shù)學試題試卷_第2頁
2024屆貴州省貴陽市普通中學高三入學考試數(shù)學試題試卷_第3頁
2024屆貴州省貴陽市普通中學高三入學考試數(shù)學試題試卷_第4頁
2024屆貴州省貴陽市普通中學高三入學考試數(shù)學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023屆貴州省貴陽市普通中學高三入學考試數(shù)學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.2.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設(shè)函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間3.已知函數(shù),若不等式對任意的恒成立,則實數(shù)k的取值范圍是()A. B. C. D.4.復數(shù)的模為().A. B.1 C.2 D.5.已知是雙曲線的左、右焦點,若點關(guān)于雙曲線漸近線的對稱點滿足(為坐標原點),則雙曲線的漸近線方程為()A. B. C. D.6.《易經(jīng)》包含著很多哲理,在信息學、天文學中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對今天的幾何學和其它學科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.7.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.8.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.9.已知,則的大小關(guān)系為()A. B. C. D.10.已知命題,,則是()A., B.,.C., D.,.11.已知,滿足約束條件,則的最大值為A. B. C. D.12.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值是______.14.已知數(shù)列{an}的前n項和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項和為_____15.已知函數(shù),令,,若,表示不超過實數(shù)的最大整數(shù),記數(shù)列的前項和為,則_________16.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.18.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.19.(12分)為提供市民的健身素質(zhì),某市把四個籃球館全部轉(zhuǎn)為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數(shù)如圖,用分層抽樣的方法從四場館的使用場數(shù)中依次抽取共25場,在中隨機取兩數(shù),求這兩數(shù)和的分布列和數(shù)學期望;(2)設(shè)四個籃球館一個月內(nèi)各館使用次數(shù)之和為,其相應(yīng)維修費用為元,根據(jù)統(tǒng)計,得到如下表的數(shù)據(jù):x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據(jù)①的結(jié)論,試估計這四個籃球館月惠值最大時的值參考數(shù)據(jù)和公式:,20.(12分)已知動圓經(jīng)過點,且動圓被軸截得的弦長為,記圓心的軌跡為曲線.(1)求曲線的標準方程;(2)設(shè)點的橫坐標為,,為圓與曲線的公共點,若直線的斜率,且,求的值.21.(12分)在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)求直線l的普通方程和圓C的直角坐標方程;(2)直線l與圓C交于A,B兩點,點P(2,1),求|PA|?|PB|的值.22.(10分)在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫出與的直角坐標方程;(2)在什么范圍內(nèi)取值時,與有交點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.2.D【解析】

可判斷函數(shù)為奇函數(shù),先討論當且時的導數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應(yīng)常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應(yīng)自變量范圍,導數(shù)法研究函數(shù)增減性,數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于難題3.A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標系內(nèi)畫出函數(shù)和的圖象,利用數(shù)形結(jié)合進行求解即可.【詳解】當時,,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點坐標為.在同一直角坐標系內(nèi)畫出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對任意的恒成立,則實數(shù)k的取值范圍是.故選:A【點睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問題,考查了導數(shù)的應(yīng)用,屬于中檔題.4.D【解析】

利用復數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的計算公式求解.【詳解】解:,復數(shù)的模為.故選:D.【點睛】本題主要考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)模的求法,屬于基礎(chǔ)題.5.B【解析】

先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關(guān)于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.6.B【解析】

由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.7.D【解析】

根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關(guān)鍵.8.A【解析】

求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關(guān)系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質(zhì)的應(yīng)用.9.A【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..10.B【解析】

根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.11.D【解析】

作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經(jīng)過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.12.C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當且僅當,,時等號成立,故答案為:1.【點睛】本題主要考查基本不等式的應(yīng)用,但是由于有3個變量,導致該題不易找到思路,屬于中檔題.14.【解析】

由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.可得:2().利用裂項求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項和為2(1)=2(1).故答案為:.【點睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.15.4【解析】

根據(jù)導數(shù)的運算,結(jié)合數(shù)列的通項公式的求法,求得,,,進而得到,再利用放縮法和取整函數(shù)的定義,即可求解.【詳解】由題意,函數(shù),且,,可得,,又由,可得為常數(shù)列,且,數(shù)列表示首項為4,公差為2的等差數(shù)列,所以,其中數(shù)列滿足,所以,所以,又由,可得數(shù)列的前n項和為,數(shù)列的前n項和為,所以數(shù)列的前項和為,滿足,所以,即,又由表示不超過實數(shù)的最大整數(shù),所以.故答案為:4.【點睛】本題主要考查了函數(shù)的導數(shù)的計算,以及等差數(shù)列的通項公式,累加法求解數(shù)列的通項公式,以及裂項法求數(shù)列的和的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于中檔試題.16.【解析】

先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數(shù),然后根據(jù)古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數(shù)有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】

(1)取中點,連接,,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點D,連接,.因為,,所以且,因為,平面,平面,所以平面.又平面,所以;(2)解:因為平面,平面,所以平面平面,過N作于E,則平面,因為平面平面,,平面平面,平面,所以平面,又因為平面,所以,由于,所以所以,所以.【點睛】本題考查線面垂直,考查三棱錐體積的計算,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì),屬于中檔題.18.(Ⅰ).(Ⅱ).【解析】

(Ⅰ)由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.19.(1)見解析,12.5(2)①②20【解析】

(1)運用分層抽樣,結(jié)合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數(shù)求導,結(jié)合單調(diào)性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數(shù)之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設(shè),所以當遞增,當遞減所以約惠值最大值時的值為20【點睛】本題考查直方圖的實際應(yīng)用,涉及求概率,平均數(shù)、擬合直線和導數(shù)等問題,關(guān)鍵是要讀懂題意,屬于中檔題.20.見解析【解析】

(1)設(shè),則點到軸的距離為,因為圓被軸截得的弦長為,所以,又,所以,化簡可得,所以曲線的標準方程為.(2)設(shè),,因為直線的斜率,所以可設(shè)直線的方程為,由及,消去可得,所以,,所以.設(shè)線段的中點為,點的縱坐標為,則,,所以直線的斜率為,所以,所以,所以.易得圓心到直線的距離,由圓經(jīng)過點,可得,所以,整理可得,解得或,所以或,又,所以.21.(1)直線的普通方程,圓的直角坐標方程:.(2)【解析】

(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換.(2)將直線的參數(shù)方程代入圓的直角坐標方程,利用一元二次方程根和系數(shù)關(guān)系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)換為直角坐標方程為x+y﹣3=0.圓C的極坐標方程為ρ2﹣4ρcosθ=3,轉(zhuǎn)換為直角坐標方程為x2+y2﹣4x﹣3=0.(2)把直線l

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論