版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023屆貴州省六盤水市第二十三中學(xué)高三1月教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知中內(nèi)角所對應(yīng)的邊依次為,若,則的面積為()A. B. C. D.2.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.3.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結(jié)論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號是()A.①② B.①③ C.①③④ D.①②④4.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}5.如圖所示,在平面直角坐標(biāo)系中,是橢圓的右焦點,直線與橢圓交于,兩點,且,則該橢圓的離心率是()A. B. C. D.6.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.7.某高中高三(1)班為了沖刺高考,營造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進(jìn)行了問話,得到回復(fù)如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細(xì)節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李8.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.9.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.10.已知集合,,則()A. B.C.或 D.11.在平面直角坐標(biāo)系中,經(jīng)過點,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.12.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.14.已知函數(shù)圖象上一點處的切線方程為,則_______.15.已知實數(shù)x,y滿足(2x-y)2+4y16.已知集合,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是各項都為正數(shù)的數(shù)列,其前項和為,且為與的等差中項.(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項和.18.(12分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時,求的零點;(2)當(dāng)時,證明:.19.(12分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.20.(12分)已知函數(shù),.(1)當(dāng)時,求函數(shù)的值域;(2),,求實數(shù)的取值范圍.21.(12分)已知橢圓()的半焦距為,原點到經(jīng)過兩點,的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.22.(10分)P是圓上的動點,P點在x軸上的射影是D,點M滿足.(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以O(shè)A,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由余弦定理可得,結(jié)合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點睛】本題考查利用余弦定理解三角形,考查學(xué)生的基本計算能力,是一道容易題.2.C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計算的實際應(yīng)用,考查學(xué)生的運算求解能力、創(chuàng)新能力.3.C【解析】
①利用之間的代換判斷出對稱軸的條數(shù);②利用基本不等式求解出到原點的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設(shè)任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.4.C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎(chǔ)題.5.A【解析】
聯(lián)立直線方程與橢圓方程,解得和的坐標(biāo),然后利用向量垂直的坐標(biāo)表示可得,由離心率定義可得結(jié)果.【詳解】由,得,所以,.由題意知,所以,.因為,所以,所以.所以,所以,故選:A.【點睛】本題考查了直線與橢圓的交點,考查了向量垂直的坐標(biāo)表示,考查了橢圓的離心率公式,屬于基礎(chǔ)題.6.A【解析】
分段求解函數(shù)零點,數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當(dāng)時與有兩個交點,故只需當(dāng)時,與有一個交點即可.若當(dāng)時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.7.D【解析】
根據(jù)題意,分別假設(shè)一個正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應(yīng)“入班即靜”,而否定小董說法后得出:小王對應(yīng)“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應(yīng)“天道酬勤”,否定小李的說法后得出:小李對應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對應(yīng)“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點睛】本題考查推理證明的實際應(yīng)用.8.D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.9.D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時最小,設(shè)正方體的棱長為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設(shè)正方體的棱長為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.10.D【解析】
首先求出集合,再根據(jù)補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎(chǔ)題.11.B【解析】
根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標(biāo)準(zhǔn)方程為故選:B【點睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.12.A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【點睛】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.14.1【解析】
求出導(dǎo)函數(shù),由切線方程得切線斜率和切點坐標(biāo),從而可求得.【詳解】由題意,∵函數(shù)圖象在點處的切線方程為,∴,解得,∴.故答案為:1.【點睛】本題考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)函數(shù)是解題基礎(chǔ),15.2【解析】
直接利用柯西不等式得到答案.【詳解】根據(jù)柯西不等式:2x-y2+4y當(dāng)2x-y=2y,即x=328故答案為:2.【點睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.16.【解析】
直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】
(1)利用已知條件化簡出,當(dāng)時,,當(dāng)時,再利用進(jìn)行化簡,得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項公式,再化簡出,可直接求出的前100項和.【詳解】解:(1)由題意知,即,①當(dāng)時,由①式可得;又時,有,代入①式得,整理得,∴是首項為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項和.【點睛】本題考查數(shù)列遞推關(guān)系的應(yīng)用,通項公式的求法以及裂項相消法求和,考查分析解題能力和計算能力.18.(1)見解析;(2)證明見解析.【解析】
當(dāng)時,求函數(shù)的導(dǎo)數(shù),判斷導(dǎo)函數(shù)的單調(diào)性,計算即為導(dǎo)函數(shù)的零點;
當(dāng)時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【詳解】(1)的定義域為當(dāng)時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當(dāng)時,,①若,則,所以成立,②若,設(shè),則,令,則,因為,所以,從而在上單調(diào)遞增,所以,即,在上單調(diào)遞增;所以,即,故.【點睛】本題主要考查導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,單調(diào)性,零點的求法.注意分類討論和構(gòu)造新函數(shù)求函數(shù)的最值的應(yīng)用.19.(1);(2).【解析】
(1)由正弦定理直接可求,然后運用兩角和的正弦公式算出;(2)化簡,由余弦定理得,利用基本不等式求出,確定角范圍,進(jìn)而求出的取值范圍.【詳解】(1)由正弦定理,得:,且為銳角(2)【點睛】本題主要考查了正余弦定理的應(yīng)用,基本不等式的應(yīng)用,三角函數(shù)的值域等,考查了學(xué)生運算求解能力.20.(1);(2).【解析】
(1)將代入函數(shù)的解析式,將函數(shù)的及解析式變形為分段函數(shù),利用二次函數(shù)的基本性質(zhì)可求得函數(shù)的值域;(2)由參變量分離法得出在區(qū)間內(nèi)有解,分和討論,求得函數(shù)的最大值,即可得出實數(shù)的取值范圍.【詳解】(1)當(dāng)時,.當(dāng)時,;當(dāng)時,.函數(shù)的值域為;(2)不等式等價于,即在區(qū)間內(nèi)有解當(dāng)時,,此時,,則;當(dāng)時,,函數(shù)在區(qū)間上單調(diào)遞增,當(dāng)時,,則.綜上,實數(shù)的取值范圍是.【點睛】本題主要考查含絕對值函數(shù)的值域與含絕對值不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 程序設(shè)計基礎(chǔ)課程設(shè)計
- 法學(xué)在線課程設(shè)計
- 社群團(tuán)購運營課程設(shè)計
- 2025吉林省安全員A證考試題庫及答案
- 物流管理課程設(shè)計論文
- 綜合班暑期繪畫課程設(shè)計
- 直角固定架模具課程設(shè)計
- 簡單潮流計算 課程設(shè)計
- 2024重慶市建筑安全員考試題庫
- 空氣調(diào)節(jié)課程設(shè)計論文
- MSA-GRR數(shù)據(jù)自動生成工具(已經(jīng)解密)
- 機器設(shè)備維護(hù)保養(yǎng)記錄表
- 自動控制原理(山東大學(xué))智慧樹知到課后章節(jié)答案2023年下山東大學(xué)
- 第三課-冬天快要到了課件
- 地腳螺栓技術(shù)交底
- 機器人柔性滾邊技術(shù)說明
- 建筑工程鋼管扣件租賃合同(總結(jié)3篇)
- 六年級上冊英語教案- Module 6 Unit 2 I've got a stamp from China. -外研社(三起)
- 教育的另一種可能
- 《電力安全工作規(guī)程》電氣部分
- 胎膜早破指南
評論
0/150
提交評論