![高等數(shù)學(xué)課件 12-2矩陣及其運(yùn)算_第1頁](http://file4.renrendoc.com/view14/M07/3F/01/wKhkGWc-uo-ABrPnAAEFt7v_4ZQ349.jpg)
![高等數(shù)學(xué)課件 12-2矩陣及其運(yùn)算_第2頁](http://file4.renrendoc.com/view14/M07/3F/01/wKhkGWc-uo-ABrPnAAEFt7v_4ZQ3492.jpg)
![高等數(shù)學(xué)課件 12-2矩陣及其運(yùn)算_第3頁](http://file4.renrendoc.com/view14/M07/3F/01/wKhkGWc-uo-ABrPnAAEFt7v_4ZQ3493.jpg)
![高等數(shù)學(xué)課件 12-2矩陣及其運(yùn)算_第4頁](http://file4.renrendoc.com/view14/M07/3F/01/wKhkGWc-uo-ABrPnAAEFt7v_4ZQ3494.jpg)
![高等數(shù)學(xué)課件 12-2矩陣及其運(yùn)算_第5頁](http://file4.renrendoc.com/view14/M07/3F/01/wKhkGWc-uo-ABrPnAAEFt7v_4ZQ3495.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
由
m×n
個(gè)數(shù)排成的
m
行
n
列的數(shù)表稱為
m行
n列矩陣,簡稱
m×n矩陣.記作第二節(jié)矩陣及其運(yùn)算簡記為元素是實(shí)數(shù)的矩陣稱為實(shí)矩陣,元素是復(fù)數(shù)的矩陣稱為復(fù)矩陣.這m×n個(gè)數(shù)稱為矩陣A的元素,簡稱為元.行數(shù)不等于列數(shù)共有m×n個(gè)元素本質(zhì)上就是一個(gè)數(shù)表行數(shù)等于列數(shù)共有n2個(gè)元素矩陣行列式行數(shù)與列數(shù)都等于
n的矩陣,稱為n階方陣.可記作.只有一行的矩陣稱為行矩陣(或行向量).
只有一列的矩陣稱為列矩陣(或列向量).元素全是零的矩陣稱為零距陣.可記作O
.例如:特殊的矩陣形如的方陣稱為對角陣.
特別的,方陣稱為單位陣.記作記作.同型矩陣與矩陣相等的概念
兩個(gè)矩陣的行數(shù)相等、列數(shù)相等時(shí),稱為同型矩陣.例如為同型矩陣.
兩個(gè)矩陣與為同型矩陣,并且對應(yīng)元 素相等,即 則稱矩陣A
與
B相等,記作A=B
.注意:不同型的零矩陣是不相等的.例如矩陣的加法定義:設(shè)有兩個(gè)
m×n
矩陣
A=(aij),B=(bij),那么矩陣
A與
B的和記作
A+B,規(guī)定為說明:只有當(dāng)兩個(gè)矩陣是同型矩陣時(shí),才能進(jìn)行加法運(yùn)算.知識(shí)點(diǎn)比較交換律結(jié)合律其他矩陣加法的運(yùn)算規(guī)律設(shè)
A、B、C是同型矩陣設(shè)矩陣
A=(aij),記-A
=(-aij),稱為矩陣
A的負(fù)矩陣.顯然設(shè)工廠向某家商店發(fā)送四種貨物各
l件,試求:工廠向該商店發(fā)送第
j種貨物的總值及總重量.例(續(xù))該廠所生產(chǎn)的貨物的單價(jià)及單件重量可列成數(shù)表:其中bi1
表示第
i種貨物的單價(jià),bi2
表示第
i種貨物的單件重量.解:工廠向該商店發(fā)送第
j種貨物的總值及總重量其中bi1
表示第
i種貨物的單價(jià),bi2
表示第
i種貨物的單件重量.?dāng)?shù)與矩陣相乘定義:數(shù)
l與矩陣
A
的乘積記作
lA
或
Al
,規(guī)定為結(jié)合律分配律備注數(shù)乘矩陣的運(yùn)算規(guī)律設(shè)
A、B是同型矩陣,l
,
m
是數(shù)矩陣相加與數(shù)乘矩陣合起來,統(tǒng)稱為矩陣的線性運(yùn)算.知識(shí)點(diǎn)比較其中aij
表示工廠向第
i家商店發(fā)送第j種貨物的數(shù)量.例(續(xù))
某工廠生產(chǎn)四種貨物,它向三家商店發(fā)送的貨物數(shù)量可用數(shù)表表示為:這四種貨物的單價(jià)及單件重量也可列成數(shù)表:其中bi1
表示第
i種貨物的單價(jià),bi2
表示第
i種貨物的單件重量.試求:工廠向三家商店所發(fā)貨物的總值及總重量.解:以
ci1,ci2
分別表示工廠向第
i家商店所發(fā)貨物的總值及總重量,其中i=1,2,3.于是其中aij
表示工廠向第
i家商店發(fā)送第j種貨物的數(shù)量.其中bi1
表示第
i種貨物的單價(jià),bi2
表示第
i種貨物的單件重量.可用矩陣表示為一般地,矩陣與矩陣相乘定義:設(shè),,那么規(guī)定矩陣
A與矩陣
B的乘積是一個(gè)
m×n矩陣,其中并把此乘積記作C=AB.例:設(shè)則知識(shí)點(diǎn)比較有意義.沒有意義.只有當(dāng)?shù)谝粋€(gè)矩陣的列數(shù)等于第二個(gè)矩陣的行數(shù)時(shí),兩個(gè)矩陣才能相乘.例P.35例5
結(jié)論:矩陣乘法不一定滿足交換律.矩陣,卻有, 從而不能由得出或的結(jié)論.矩陣乘法的運(yùn)算規(guī)律(1)
乘法結(jié)合律(3)
乘法對加法的分配律(2)
數(shù)乘和乘法的結(jié)合律(其中
l
是數(shù))(4)單位矩陣在矩陣乘法中的作用類似于數(shù)1,即推論:矩陣乘法不一定滿足交換律,但是純量陣
lE
與任何同階方陣都是可交換的.純量陣不同于對角陣(5)矩陣的冪若A是n階方陣,定義顯然思考:下列等式在什么時(shí)候成立?A、B可交換時(shí)成立矩陣的轉(zhuǎn)置定義:把矩陣
A的行換成同序數(shù)的列得到的新矩陣,叫做的轉(zhuǎn)置矩陣,記作AT
.例轉(zhuǎn)置矩陣的運(yùn)算性質(zhì)例:已知解法1解法2定義:設(shè)A
為n
階方陣,如果滿足,即那么A稱為對稱陣.如果滿足A=-AT,那么A稱為反對稱陣.對稱陣反對稱陣?yán)涸O(shè)列矩陣X=(x1,x2,…,xn
)T
滿足XT
X=1,E
為n階單位陣,H=E-2XXT,試證明
H是對稱陣,且HHT=E.證明:從而
H是對稱陣.方陣的行列式定義:由
n階方陣的元素所構(gòu)成的行列式,叫做方陣
A的行列式,記作|A|或detA.運(yùn)算性質(zhì)證明:要使得|AB|=|A||B|
有意義,A、B
必為同階方陣,假設(shè)A=(aij)n×n,B=(bij)n×n.我們以
n=3為例,構(gòu)造一個(gè)6階行列式令,則
C=(cij)=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- LY/T 3401-2024石漠化防治術(shù)語
- 人教版數(shù)學(xué)七年級下冊5.3.1《平行線的性質(zhì)》聽評課記錄1
- 粵教版道德與法治九年級上冊3.2.2《社會(huì)和諧 人人共享》聽課評課記錄
- 浙教版數(shù)學(xué)七年級下冊《4.3 用乘法公式分解因式》聽評課記錄2
- 中圖版歷史七年級上冊第5課《青銅器和甲骨文》聽課評課記錄
- 人教部編版八年級道德與法治上冊:3.1《維護(hù)秩序》聽課評課記錄1
- 環(huán)保工程合同(2篇)
- 人教版七年級地理下冊《日本》聽課評課記錄4
- 人教版歷史八年級上冊第15課《北伐戰(zhàn)爭》聽課評課記錄
- 新版華東師大版八年級數(shù)學(xué)下冊《16.3可化為一元一次方程的分式方程2》聽評課記錄9
- 電網(wǎng)工程設(shè)備材料信息參考價(jià)(2024年第四季度)
- 2025年江蘇農(nóng)牧科技職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025江蘇連云港市贛榆城市建設(shè)發(fā)展集團(tuán)限公司招聘工作人員15人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 江蘇省揚(yáng)州市蔣王小學(xué)2023~2024年五年級上學(xué)期英語期末試卷(含答案無聽力原文無音頻)
- 數(shù)學(xué)-湖南省新高考教學(xué)教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學(xué)年2025屆高三上學(xué)期第一次預(yù)熱演練試題和答案
- 決勝中層:中層管理者的九項(xiàng)修煉-記錄
- 《軌道交通工程盾構(gòu)施工技術(shù)》 課件 項(xiàng)目2 盾構(gòu)構(gòu)造認(rèn)知
- 《港珠澳大橋演講》課件
- 《有機(jī)化學(xué)》課件-第十章 羧酸及其衍生物
- 人教版道德與法治五年級下冊《第一單元 我們一家人》大單元整體教學(xué)設(shè)計(jì)2022課標(biāo)
- 2024年海南公務(wù)員考試申論試題(A卷)
評論
0/150
提交評論