




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省昭通市巧家縣一中高考仿真模擬數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里3.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40404.設(shè)實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.45.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.6.復數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.7.設(shè),則復數(shù)的模等于()A. B. C. D.8.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.89.已知命題,那么為()A. B.C. D.10.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.11.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.12.若函數(shù)函數(shù)只有1個零點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應是:_____.14.已知i為虛數(shù)單位,復數(shù),則=_______.15.已知橢圓,,若橢圓上存在點使得為等邊三角形(為原點),則橢圓的離心率為_________.16.直線(,)過圓:的圓心,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.18.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構(gòu)成一個三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.19.(12分)如圖:在中,,,.(1)求角;(2)設(shè)為的中點,求中線的長.20.(12分)設(shè)數(shù)列的前n項和滿足,,,(1)證明:數(shù)列是等差數(shù)列,并求其通項公式﹔(2)設(shè),求證:.21.(12分)如圖,已知橢圓經(jīng)過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設(shè)橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.22.(10分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設(shè)點,直線與曲線交于兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.2、B【解析】
人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數(shù)列的應用,意在考查學生的計算能力和應用能力.3、D【解析】
計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數(shù)列,意在考查學生的計算能力和應用能力.4、C【解析】
畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.5、C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.6、C【解析】
直接利用復數(shù)的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復數(shù)的除法的運算法則的應用,考查計算能力.7、C【解析】
利用復數(shù)的除法運算法則進行化簡,再由復數(shù)模的定義求解即可.【詳解】因為,所以,由復數(shù)模的定義知,.故選:C【點睛】本題考查復數(shù)的除法運算法則和復數(shù)的模;考查運算求解能力;屬于基礎(chǔ)題.8、C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.9、B【解析】
利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點睛】本題主要考查特稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.10、C【解析】
根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機變量服從正態(tài)分布,則.11、D【解析】
以BC的中點為坐標原點,建立直角坐標系,可得,設(shè),運用向量的坐標表示,求得點A的軌跡,進而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設(shè),由,可得,即,則,當時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.12、C【解析】
轉(zhuǎn)化有1個零點為與的圖象有1個交點,求導研究臨界狀態(tài)相切時的斜率,數(shù)形結(jié)合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設(shè)切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數(shù)在函數(shù)零點問題中的應用,考查了學生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應是:1故答案為:1.【點睛】本題考查了程序框圖,意在考查學生的計算能力和理解能力.14、【解析】
先把復數(shù)進行化簡,然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點睛】本題主要考查復數(shù)模的求解,利用復數(shù)的運算把復數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).15、【解析】
根據(jù)題意求出點N的坐標,將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點睛】本題考查了橢圓的標準方程及幾何性質(zhì),屬于中檔題.16、;【解析】
求出圓心坐標,代入直線方程得的關(guān)系,再由基本不等式求得題中最小值.【詳解】圓:的標準方程為,圓心為,由題意,即,∴,當且僅當,即時等號成立,故答案為:.【點睛】本題考查用基本不等式求最值,考查圓的標準方程,解題方法是配方法求圓心坐標,“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標系,分別表示出對應的點坐標,設(shè)平面的一個法向量為,結(jié)合直線對應的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標系,則,,,,,,.設(shè)平面的一個法向量為,由,取,得.設(shè)直線與平面所成角為,則.直線與平面所成角的正弦值為.【點睛】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記18、(1)平行,證明見解析;(2).【解析】
(1)由題意及圖形的翻折規(guī)律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎(chǔ)題.19、(1);(2)【解析】
(1)通過求出的值,利用正弦定理求出即可得角;(2)根據(jù)求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結(jié)果.【詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【點睛】本題主要考查了正弦定理和余弦定理在解三角形中的應用,考查三角函數(shù)知識的運用,屬于中檔題.20、(1)證明見解析,;(2)證明見解析【解析】
(1)由,作差得到,進一步得到,再作差即可得到,從而使問題得到解決;(2),求和即可.【詳解】(1),,兩式相減:①用換,得②②—①,得,即,所以數(shù)列是等差數(shù)列,又,∴,,公差,所以.(II).【點睛】本題考查由與的關(guān)系求通項以及裂項相消法求數(shù)列的和,考查學生的計算能力,是一道容易題.21、(1);(2)詳見解析.【解析】
(1)由橢圓離心率、系數(shù)關(guān)系和已知點坐標構(gòu)建方程組,求得,代入標準方程中即可;(2)依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),,通過聯(lián)立直線方程與橢圓方程化簡整理和中點的坐標表示用含k的表達式表示,,進而表示;由韋達定理表示根與系數(shù)的關(guān)系進而表示用含k的表達式表示,最后做比即得證.【詳解】(1)設(shè)橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標準方程為.(2)證明:依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),.與橢圓聯(lián)立整理得,故所以,,所以.又,所以為定值,得證.【點睛】本題考查由離心率求橢圓的標準方程,還考查了橢圓中的定值問題,屬于較難題.22、(1);(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應用,把參數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國低度果酒市場營銷態(tài)勢及競爭格局分析報告
- 四川達州海關(guān)招聘筆試真題2024
- 2024年云南中煙真題試卷及答案
- 2024年揭陽揭西縣選調(diào)高中教師筆試真題
- 公司日常會議室管理制度
- 核電人員動態(tài)管理制度
- 公司未制定印章管理制度
- 家具制造業(yè)公司管理制度
- 旅店賓館衛(wèi)生管理制度
- 汽車課件9-2-3章節(jié)
- 《商務智能方法與應用》考試復習題庫(帶答案)
- 軍隊保密協(xié)議書模板(標準版)
- Python語言編程基礎(chǔ)PPT完整全套教學課件
- 2023年杭州中考科學(word版及詳細答案)
- 安徽諾全藥業(yè)有限公司年產(chǎn)105噸醫(yī)藥中間體及原料藥項目環(huán)境影響報告書
- 2022年鹽城市大豐區(qū)事業(yè)單位考試真題及答案
- 2017年福州市初中畢業(yè)班質(zhì)量檢測英語試卷及答案
- 性科學與生殖健康智慧樹知到答案章節(jié)測試2023年武漢科技大學
- WS/T 227-2002臨床檢驗操作規(guī)程編寫要求
- GB/T 9254.1-2021信息技術(shù)設(shè)備、多媒體設(shè)備和接收機電磁兼容第1部分: 發(fā)射要求
- GB/T 40734-2021焊縫無損檢測相控陣超聲檢測驗收等級
評論
0/150
提交評論