新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第18講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(解析版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第18講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(解析版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第18講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(解析版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第18講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(解析版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第18講 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第18講利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性【基礎(chǔ)知識(shí)全通關(guān)】一、函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系我們知道,如果函數(shù)SKIPIF1<0在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么就說(shuō)SKIPIF1<0在這一區(qū)間具有單調(diào)性,先看下面的例子:函數(shù)SKIPIF1<0的圖象如圖所示??紤]到曲線SKIPIF1<0的切線的斜率就是函數(shù)SKIPIF1<0的導(dǎo)數(shù),從圖象可以看到:在區(qū)間(2,+∞)內(nèi),切線的斜率為正,即SKIPIF1<0時(shí),SKIPIF1<0為增函數(shù);在區(qū)間(-∞,2)內(nèi),切線的斜率為負(fù),即SKIPIF1<0時(shí),SKIPIF1<0為減函數(shù)。導(dǎo)數(shù)的符號(hào)與函數(shù)的單調(diào)性:一般地,設(shè)函數(shù)SKIPIF1<0在某個(gè)區(qū)間內(nèi)有導(dǎo)數(shù),則在這個(gè)區(qū)間上,①若SKIPIF1<0,則SKIPIF1<0在這個(gè)區(qū)間上為增函數(shù);②若SKIPIF1<0,則SKIPIF1<0在這個(gè)區(qū)間上為減函數(shù);③若恒有SKIPIF1<0,則SKIPIF1<0在這一區(qū)間上為常函數(shù).反之,若SKIPIF1<0在某區(qū)間上單調(diào)遞增,則在該區(qū)間上有SKIPIF1<0恒成立(但不恒等于0);若SKIPIF1<0在某區(qū)間上單調(diào)遞減,則在該區(qū)間上有SKIPIF1<0恒成立(但不恒等于0).【微點(diǎn)撥】1.因?yàn)閷?dǎo)數(shù)的幾何意義是曲線切線的斜率,故當(dāng)在某區(qū)間上SKIPIF1<0,即切線斜率為正時(shí),函數(shù)SKIPIF1<0在這個(gè)區(qū)間上為增函數(shù);當(dāng)在某區(qū)間上SKIPIF1<0,即切線斜率為負(fù)時(shí),函數(shù)SKIPIF1<0在這個(gè)區(qū)間上為減函數(shù);即導(dǎo)函數(shù)的正負(fù)決定了原函數(shù)的增減。2.若在某區(qū)間上有有限個(gè)點(diǎn)使SKIPIF1<0,在其余點(diǎn)恒有SKIPIF1<0,則SKIPIF1<0仍為增函數(shù)(減函數(shù)的情形完全類似)。即在某區(qū)間上,SKIPIF1<0SKIPIF1<0SKIPIF1<0在這個(gè)區(qū)間上為增函數(shù);SKIPIF1<0SKIPIF1<0SKIPIF1<0在這個(gè)區(qū)間上為減函數(shù),但反之不成立。3.SKIPIF1<0在某區(qū)間上為增函數(shù)SKIPIF1<0在該區(qū)間SKIPIF1<0;SKIPIF1<0在某區(qū)間上為減函數(shù)SKIPIF1<0在該區(qū)間SKIPIF1<0。在區(qū)間(a,b)內(nèi),SKIPIF1<0(或SKIPIF1<0)是SKIPIF1<0在區(qū)間(a,b)內(nèi)單調(diào)遞增(或減)的充分不必要條件!例如:SKIPIF1<0而f(x)在R上遞增.4.只有在某區(qū)間內(nèi)恒有SKIPIF1<0,這個(gè)函數(shù)SKIPIF1<0在這個(gè)區(qū)間上才為常數(shù)函數(shù).5.注意導(dǎo)函數(shù)圖象與原函數(shù)圖象間關(guān)系.二、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的基本方法設(shè)函數(shù)SKIPIF1<0在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒有SKIPIF1<0,則函數(shù)SKIPIF1<0在(a,b)內(nèi)為增函數(shù);(2)如果恒有SKIPIF1<0,則函數(shù)SKIPIF1<0在(a,b)內(nèi)為減函數(shù);(3)如果恒有SKIPIF1<0,則函數(shù)SKIPIF1<0在(a,b)內(nèi)為常數(shù)函數(shù)?!疚Ⅻc(diǎn)撥】(1)若函數(shù)SKIPIF1<0在區(qū)間(a,b)內(nèi)單調(diào)遞增,則SKIPIF1<0,若函數(shù)SKIPIF1<0在(a,b)內(nèi)單調(diào)遞減,則SKIPIF1<0。(2)SKIPIF1<0或SKIPIF1<0恒成立,求參數(shù)值的范圍的方法——分離參數(shù)法:SKIPIF1<0或SKIPIF1<0。三、利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的基本步驟(1)確定函數(shù)SKIPIF1<0的定義域;(2)求導(dǎo)數(shù)SKIPIF1<0;(3)在函數(shù)SKIPIF1<0的定義域內(nèi)解不等式SKIPIF1<0或SKIPIF1<0;(4)確定SKIPIF1<0的單調(diào)區(qū)間?;蛘撸毫頢KIPIF1<0,求出它在定義域內(nèi)的一切實(shí)數(shù)根。把這些實(shí)數(shù)根和函數(shù)的間斷點(diǎn)(即SKIPIF1<0的無(wú)定義點(diǎn))的橫坐標(biāo)按從小到大的順序排列起來(lái),然后用這些點(diǎn)把函數(shù)SKIPIF1<0的定義區(qū)間分成若干個(gè)小區(qū)間,判斷在各個(gè)小區(qū)間內(nèi)SKIPIF1<0的符號(hào)?!疚Ⅻc(diǎn)撥】1.求函數(shù)單調(diào)區(qū)間時(shí),要注意單調(diào)區(qū)間一定是函數(shù)定義域的子集。2.求單調(diào)區(qū)間常常通過列表的方法進(jìn)行求解,使解題思路步驟更加清晰、明確。【考點(diǎn)研習(xí)一點(diǎn)通】考點(diǎn)一:求函數(shù)的單調(diào)區(qū)間例1、確定函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【解析】SKIPIF1<0。令SKIPIF1<0,得x<0或x>2,∴當(dāng)x<0或x>2時(shí)函數(shù)SKIPIF1<0是增函數(shù)。因此,函數(shù)SKIPIF1<0的單調(diào)增區(qū)間為(-∞,0)和(2,+∞)。令SKIPIF1<0,得0<x<2?!嗪瘮?shù)SKIPIF1<0在(0,2)上是減函數(shù),其單調(diào)遞減區(qū)間為(0,2)?!究偨Y(jié)】(1)解決此類題目,關(guān)鍵是解不等式SKIPIF1<0或SKIPIF1<0。(2)注意寫單調(diào)區(qū)間時(shí),不是連續(xù)的區(qū)間一般不能用并集符號(hào)“U”。【變式1-1】確定下列函數(shù)的單調(diào)區(qū)間(1)y=x3-9x2+24x(2)y=3x-x3【解析】(1)y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)令3(x-2)(x-4)>0,解得x>4或x<2.∴y=x3-9x2+24x的單調(diào)增區(qū)間是(4,+∞)和(-∞,2)令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的單調(diào)減區(qū)間是(2,4)(2)y′=(3x-x3)′=3-3x2=-3(x2-1)=-3(x+1)(x-1)令-3(x+1)(x-1)>0,解得-1<x<1.∴y=3x-x3的單調(diào)增區(qū)間是(-1,1).令-3(x+1)(x-1)<0,解得x>1或x<-1.∴y=3x-x3的單調(diào)減區(qū)間是(-∞,-1)和(1,+∞)【點(diǎn)評(píng)】(1)解決此類題目,關(guān)鍵是解不等式SKIPIF1<0或SKIPIF1<0。(2)注意寫單調(diào)區(qū)間時(shí),不是連續(xù)的區(qū)間一般不能用并集符號(hào)“U”。【變式1-2】求下列函數(shù)的單調(diào)區(qū)間:(1)SKIPIF1<0(2)SKIPIF1<0;(3)SKIPIF1<0;【答案】(1)SKIPIF1<0。令3x2―4x+1>0,解得x>1或SKIPIF1<0。因此,y=x3-2x2+x的單調(diào)遞增區(qū)間為(1,+∞)和SKIPIF1<0。再令3x2-4x+x<0,解得SKIPIF1<0。因此,y=x3-2x2+x的單調(diào)遞減區(qū)間為SKIPIF1<0。(2)函數(shù)的定義域?yàn)椋?,+∞),SKIPIF1<0。令SKIPIF1<0,即SKIPIF1<0,結(jié)合x>0,可解得SKIPIF1<0;令SKIPIF1<0,即SKIPIF1<0,結(jié)合x>0,可解得SKIPIF1<0?!郤KIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0。(3)SKIPIF1<0SKIPIF1<0?!?≤x≤2π,∴使SKIPIF1<0的SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則區(qū)間[0,2π]被分成三個(gè)子區(qū)間。如表所示:x0…SKIPIF1<0…π…SKIPIF1<0…SKIPIF1<0SKIPIF1<0+0-0-0+SKIPIF1<0所以函數(shù)SKIPIF1<0(0≤x≤π)的單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0?!咀兪?-3】已知函數(shù),求函數(shù)SKIPIF1<0的單調(diào)區(qū)間并說(shuō)明其單調(diào)性?!窘馕觥縎KIPIF1<0SKIPIF1<0圖像的對(duì)稱軸為SKIPIF1<0且SKIPIF1<0時(shí)值為SKIPIF1<0。所以有如下討論:【點(diǎn)評(píng)】(1)解決此類題目,關(guān)鍵是解不等式SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0中含有參數(shù),往往要分類討論。(2)特別應(yīng)注意,在求解過程中應(yīng)先寫出函數(shù)的定義域,再在定義域的范圍內(nèi)寫出單調(diào)區(qū)間,即定義域優(yōu)先考慮的原則?!咀兪?-4】求函數(shù)SKIPIF1<0(a∈R)的單調(diào)區(qū)間?!窘馕觥縎KIPIF1<0①當(dāng)a≥0時(shí),y'≥0,函數(shù)SKIPIF1<0在(-∞,+∞)上為增函數(shù)。②當(dāng)a<0時(shí),令3x2+a=0得SKIPIF1<0,∴y'>0的解集為SKIPIF1<0。y'<0的解集為SKIPIF1<0?!嗪瘮?shù)SKIPIF1<0的單調(diào)增區(qū)間是SKIPIF1<0和SKIPIF1<0,減區(qū)間是SKIPIF1<0。綜上可知:當(dāng)a≥0時(shí),函數(shù)SKIPIF1<0在(-∞,+∞)上單調(diào)遞增。當(dāng)a<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減。【總結(jié)】(1)解決此類題目,關(guān)鍵是解不等式SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0中含有參數(shù),往往要分類討論。(2)特別應(yīng)注意,在求解過程中應(yīng)先寫出函數(shù)的定義域,再在定義域的范圍內(nèi)寫出單調(diào)區(qū)間,即定義域優(yōu)先考慮的原則??键c(diǎn)二:判斷、證明函數(shù)的單調(diào)性例2.當(dāng)SKIPIF1<0時(shí),求證:函數(shù)SKIPIF1<0是單調(diào)遞減函數(shù).【解析】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0故函數(shù)SKIPIF1<0在SKIPIF1<0上是單調(diào)遞減函數(shù).【總結(jié)】判斷、證明函數(shù)的單調(diào)性的步驟:1、求導(dǎo);2、變形(分解或配方);3、判斷導(dǎo)數(shù)式的符號(hào),下結(jié)論?!咀兪?-1】當(dāng)SKIPIF1<0時(shí),求證:函數(shù)SKIPIF1<0是單調(diào)遞減函數(shù).【答案】SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0故函數(shù)SKIPIF1<0在SKIPIF1<0上是單調(diào)遞減函數(shù).【變式2-2】已知函數(shù)SKIPIF1<0,討論函數(shù)SKIPIF1<0的單調(diào)性. 【解析】由題設(shè)知SKIPIF1<0.令SKIPIF1<0.(i)當(dāng)a>0時(shí),若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù);若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù);若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù);(ii)當(dāng)a<0時(shí),若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù);若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù);若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù).【總結(jié)】(1)在判斷函數(shù)的單調(diào)性時(shí),只需判斷函數(shù)的導(dǎo)數(shù)恒大于0或恒小于0。(2)在判斷含參數(shù)函數(shù)的單調(diào)性時(shí),不僅要考慮到參數(shù)的取值范圍,而且要結(jié)合函數(shù)的定義域來(lái)確定SKIPIF1<0的符號(hào),否則會(huì)產(chǎn)生錯(cuò)誤判斷。分類討論必須給予足夠的重視,真正發(fā)揮數(shù)學(xué)解題思想在聯(lián)系知識(shí)與能力中的作用,從而提高簡(jiǎn)化計(jì)算的能力。(3)分類討論是重要的數(shù)學(xué)解題方法。它把數(shù)學(xué)問題劃分成若干個(gè)局部問題,在每一個(gè)局部問題中,原先的“不確定因素”不再影響問題的解決,當(dāng)這些局部問題都解決完時(shí),整個(gè)問題也就解決了?!咀兪?-3】設(shè)SKIPIF1<0,討論函數(shù)SKIPIF1<0的單調(diào)性.【解析】SKIPIF1<0.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0.SKIPIF1<0(i)當(dāng)SKIPIF1<0時(shí),對(duì)所有SKIPIF1<0,有SKIPIF1<0.即SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增.(ii)當(dāng)SKIPIF1<0時(shí),對(duì)SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0在(0,1)內(nèi)單調(diào)遞增,又知函數(shù)SKIPIF1<0在x=1處連續(xù),因此,函數(shù)SKIPIF1<0在(0,+SKIPIF1<0)內(nèi)單調(diào)遞增(iii)當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0.因此,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增,在區(qū)間SKIPIF1<0內(nèi)也單調(diào)遞增.令SKIPIF1<0,解得SKIPIF1<0.因此,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減.【點(diǎn)評(píng)】(1)在判斷函數(shù)的單調(diào)性時(shí),只需判斷函數(shù)的導(dǎo)數(shù)恒大于0或恒小于0。(2)在判斷含參數(shù)函數(shù)的單調(diào)性時(shí),不僅要考慮到參數(shù)的取值范圍,而且要結(jié)合函數(shù)的定義域來(lái)確定SKIPIF1<0的符號(hào),否則會(huì)產(chǎn)生錯(cuò)誤判斷。分類討論必須給予足夠的重視,真正發(fā)揮數(shù)學(xué)解題思想在聯(lián)系知識(shí)與能力中的作用,從而提高簡(jiǎn)化計(jì)算的能力。(3)分類討論是重要的數(shù)學(xué)解題方法。它把數(shù)學(xué)問題劃分成若干個(gè)局部問題,在每一個(gè)局部問題中,原先的“不確定因素”不再影響問題的解決,當(dāng)這些局部問題都解決完時(shí),整個(gè)問題也就解決了。【變式2-4】已知函數(shù),SKIPIF1<0,a>0,討論SKIPIF1<0的單調(diào)性.【答案】由于令當(dāng),即時(shí),恒成立.在(-∞,0)及(0,+∞)上都是增函數(shù).當(dāng),即時(shí)由得或或或又由得綜上當(dāng)SKIPIF1<0時(shí),在上都是增函數(shù).當(dāng)SKIPIF1<0時(shí),在上是減函數(shù),在上都是增函數(shù).考點(diǎn)三:已知函數(shù)單調(diào)性,求參數(shù)的取值范圍例3.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【點(diǎn)撥】若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,即SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,令SKIPIF1<0,利用導(dǎo)數(shù)法求出函數(shù)的最小值,可得答案?!窘馕觥咳艉瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,即SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,即SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為減函數(shù);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為增函數(shù);故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值4,SKIPIF1<0,故選B。【總結(jié)】(1)SKIPIF1<0在某區(qū)間上為增函數(shù)SKIPIF1<0在該區(qū)間SKIPIF1<0;SKIPIF1<0在某區(qū)間上為減函數(shù)SKIPIF1<0在該區(qū)間SKIPIF1<0。(2)SKIPIF1<0恒成立,則SKIPIF1<0;SKIPIF1<0恒成立,只需SKIPIF1<0,這是求變量a的范圍的常用方法?!咀兪?-1】已知函數(shù)SKIPIF1<0,SKIPIF1<0。若SKIPIF1<0在SKIPIF1<0上是增函數(shù),求a的取值范圍。【答案】由已知得SKIPIF1<0,∵SKIPIF1<0在(0,1]上單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0在x∈(0,1]上恒成立。令SKIPIF1<0,又SKIPIF1<0在(0,1]上單調(diào)遞增,∴SKIPIF1<0,∴a>-1。當(dāng)a=-1時(shí),SKIPIF1<0對(duì)x∈(0,1)也有SKIPIF1<0,∴a=-1時(shí),SKIPIF1<0在(0,1]上也是增函數(shù)。∴綜上,SKIPIF1<0在(0,1]上為增函數(shù),∴a的取值范圍是[-1,+∞)。【變式3-2】已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】SKIPIF1<0,因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),所以SKIPIF1<0對(duì)SKIPIF1<0恒成立,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,解之得:SKIPIF1<0所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【變式3-3】設(shè)SKIPIF1<0恰有三個(gè)單調(diào)區(qū)間,試確定a的取值范圍,并求其單調(diào)區(qū)間.【答案】SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0恒成立,此時(shí)f(x)在R上為單調(diào)函數(shù),只有一個(gè)單調(diào)區(qū)間為SKIPIF1<0,不合題意;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0∴當(dāng)SKIPIF1<0時(shí),函數(shù)有三個(gè)單調(diào)區(qū)間,增區(qū)間為:SKIPIF1<0;減區(qū)間為:SKIPIF1<0,SKIPIF1<0.【變式3-4】已知f(x)=x2+1,g(x)=x4+2x2+2且F(x)=g(x)-f(x),試問:是否存在實(shí)數(shù),使F(x)在(-,-1)上是減函數(shù),且在(-1,0)上是增函數(shù).【答案】假設(shè)存在實(shí)數(shù)滿足題設(shè).F(x)=g(x)-f(x)=(x4+2x2+2)-(x2+1)=x4-(-2)x2+(2-),F(x)=4x3-2(-2)x,令4x3-2(-2)x=0,(1)若≤2,則x=0.當(dāng)x∈(-∞,0)時(shí),F(xiàn)(x)<0;當(dāng)x∈(0,+∞)時(shí),F(xiàn)(x)>0.∴F(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,顯然不符合題設(shè).(2)若>2,則x=0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),F(xiàn)(x)<0;當(dāng)SKIPIF1<0時(shí),F(xiàn)(x)>0;當(dāng)SKIPIF1<0時(shí),F(xiàn)(x)<0;當(dāng)SKIPIF1<0時(shí),F(xiàn)(x)>0.∴F(x)的單調(diào)增區(qū)間是SKIPIF1<0,SKIPIF1<0,單調(diào)減區(qū)間是SKIPIF1<0,SKIPIF1<0.要使F(x)在(-∞,-1)上是減函數(shù),且在(-1,0)上是增函數(shù),則SKIPIF1<0,即=4.故存在實(shí)數(shù)=4,使F(x)在(-∞,-1)上是減函數(shù),且在(-1,0)上是增函數(shù)?!究键c(diǎn)易錯(cuò)】1.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在單調(diào)遞增區(qū)間,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在單調(diào)遞增區(qū)間,所以SKIPIF1<0在區(qū)間SKIPIF1<0上成立,即SKIPIF1<0在區(qū)間SKIPIF1<0上有解,因此,只需SKIPIF1<0,解得SKIPIF1<0.故選D2.已知函數(shù)f(x)=x2+eq\f(a,x),若函數(shù)f(x)在x∈[2,+∞)上是單調(diào)遞增的,則實(shí)數(shù)a的取值范圍為()A.(-∞,8) B.(-∞,16]C.(-∞,-8)∪(8,+∞) D.(-∞,-16]∪[16,+∞)【答案】B【解析】f(x)=x2+eq\f(a,x)在x∈[2,+∞)上單調(diào)遞增,則f′(x)=2x-eq\f(a,x2)=eq\f(2x3-a,x2)≥0在x∈[2,+∞)上恒成立.則a≤2x3在x∈[2,+∞)上恒成立.所以a≤16.故選:B.3.已知函數(shù)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.記SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的大小關(guān)系是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),所以SKIPIF1<0,

令函數(shù)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0上的偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,

又SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.4.函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是()A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)【答案】D【解析】因?yàn)閒(x)=(x-3)ex,則f′(x)=ex(x-2),令f′(x)>0,得x>2,所以f(x)的單調(diào)遞增區(qū)間為(2,+∞).故選D.5.若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實(shí)數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【解析】SKIPIF1<0,SKIPIF1<0.根據(jù)題意得知,不等式SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,即SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,由于函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,SKIPIF1<0.因此,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.6.已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】SKIPIF1<0,因?yàn)镾KIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),所以SKIPIF1<0對(duì)SKIPIF1<0恒成立,即SKIPIF1<0對(duì)SKIPIF1<0恒成立,解之得:SKIPIF1<0所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.7.已知向量a=(SKIPIF1<0,x+1),b=(1―x,t),若函數(shù)SKIPIF1<0在區(qū)間(―1,1)上是增函數(shù),求t的取值范圍?!敬鸢浮拷夥ㄒ唬阂蓝xSKIPIF1<0,則SKIPIF1<0。若SKIPIF1<0在(―1,1)上是增函數(shù),則在區(qū)間(―1,1)上有SKIPIF1<0?!郤KIPIF1<0在區(qū)間(―1,1)上恒成立。考慮函數(shù)SKIPIF1<0,由于SKIPIF1<0在圖象的對(duì)稱軸為SKIPIF1<0,且SKIPIF1<0在開口向上的拋物線,故要使t≥x2―2x在區(qū)間(―1,1)上恒成立SKIPIF1<0,即t≥5。解法二:依定義SKIPIF1<0,SKIPIF1<0。若SKIPIF1<0在(-1,1)上是增函數(shù),則在區(qū)間(-1,1)上有SKIPIF1<0。∵SKIPIF1<0的圖象是開口向下的拋物線,∴當(dāng)且僅當(dāng)SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0在(―1,1)上滿足SKIPIF1<0,即SKIPIF1<0在(―1,1)上是增函數(shù)。故t的取值范圍是t≥5?!眷柟烫嵘?.設(shè)函數(shù)f'(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),xf'(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)【答案】A.【解析】記函數(shù)SKIPIF1<0,則SKIPIF1<0,因?yàn)楫?dāng)x>0時(shí),xf'(x)-f(x)<0,故當(dāng)x>0時(shí),g'(x)<0,所以g(x)在(0,+∞)單調(diào)遞減;又因?yàn)楹瘮?shù)f(x)(x∈R)是奇函數(shù),故函數(shù)g(x)是偶函數(shù),所以g(x)在(-∞,0)單調(diào)遞減,且g(-1)=g(1)=0.當(dāng)0<x<1時(shí),g(x)>0,則f(x)>0;當(dāng)x<-1時(shí),g(x)<0,則f(x)>0,綜上所述,使得f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1),故選A.2.函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間是 ()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.(SKIPIF1<0,e)【答案】C.【解析】SKIPIF1<0,SKIPIF1<0,所以選C.3.設(shè)SKIPIF1<0在(0,+∞)內(nèi)單調(diào)遞增,SKIPIF1<0,則p是q的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件【答案】B.【解析】由題意知SKIPIF1<0在(0,+∞)上恒成立,則SKIPIF1<0在x∈(0,+∞)上恒成立。當(dāng)x∈(0,+∞)時(shí),SKIPIF1<0,則SKIPIF1<0的最大值要小于-5,不妨設(shè)為c,∴m≥c不可能推出m≥-5。但由m≥-5,可以推出m≥c。故B正確。4.函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0,對(duì)任意SKIPIF1<0都有SKIPIF1<0成立,則不等式SKIPIF1<0的解集是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0在R上單調(diào)遞減,而SKIPIF1<0SKIPIF1<0SKIPIF1<0不等式SKIPIF1<0,可化為SKIPIF1<0SKIPIF1<0即不等式SKIPIF1<0的解集為SKIPIF1<0。故選B5.設(shè)函數(shù)SKIPIF1<0在R上的導(dǎo)函數(shù)為SKIPIF1<0,且SKIPIF1<0,下面的不等式在R內(nèi)恒成立的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A.【解析】由x>0時(shí),SKIPIF1<0。令SKIPIF1<0,則SKIPIF1<0?!逽KIPIF1<0,∴SKIPIF1<0在(0,+∞)上為增函數(shù)。當(dāng)x<0時(shí),SKIPIF1<0。令SKIPIF1<0,則SKIPIF1<0?!郤KIPIF1<0在(-∞,0)上為減函數(shù),∴SKIPIF1<0,∴SKIPIF1<0在R上恒成立,且x≠0時(shí),SKIPIF1<0。即SKIPIF1<0,∴SKIPIF1<0在x∈R且x≠0時(shí)恒成立。把x=0代入SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0在R上恒成立。6.已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)是否存在SKIPIF1<0,使得SKIPIF1<0在區(qū)間SKIPIF1<0的最小值為SKIPIF1<0且最大值為1?若存在,求出SKIPIF1<0的所有值;若不存在,說(shuō)明理由.【解析】(1)SKIPIF1<0.令SKIPIF1<0,得x=0或SKIPIF1<0.若a>0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減;若a=0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增;若a<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.(2)滿足題設(shè)條件的a,b存在.(i)當(dāng)a≤0時(shí),由(1)知,SKIPIF1<0在[0,1]單調(diào)遞增,所以SKIPIF1<0在區(qū)間[0,l]的最小值為SKIPIF1<0,最大值為SKIPIF1<0.此時(shí)a,b滿足題設(shè)條件當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,即a=0,SKIPIF1<0.(ii)當(dāng)a≥3時(shí),由(1)知,SKIPIF1<0在[0,1]單調(diào)遞減,所以SKIPIF1<0在區(qū)間[0,1]的最大值為SKIPIF1<0,最小值為SKIPIF1<0.此時(shí)a,b滿足題設(shè)條件當(dāng)且僅當(dāng)SKIPIF1<0,b=1,即a=4,b=1.(iii)當(dāng)0<a<3時(shí),由(1)知,SKIPIF1<0在[0,1]的最小值為SKIPIF1<0,最大值為b或SKIPIF1<0.若SKIPIF1<0,b=1,則SKIPIF1<0,與0<a<3矛盾.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0或a=0,與0<a<3矛盾.綜上,當(dāng)且僅當(dāng)a=0,SKIPIF1<0或a=4,b=1時(shí),SKIPIF1<0在[0,1]的最小值為-1,最大值為1.7.設(shè)函數(shù)SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(Ⅰ)求SKIPIF1<0的單調(diào)區(qū)間;(Ⅱ)當(dāng)SKIPIF1<0時(shí),證明SKIPIF1<0;(Ⅲ)設(shè)SKIPIF1<0為函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點(diǎn),其中SKIPIF1<0,證明SKIPIF1<0.【解析】(Ⅰ)由已知,有SKIPIF1<0.因此,當(dāng)SKIPIF1<0SKIPIF1<0時(shí),有SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0SKIPIF1<0時(shí),有SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0單調(diào)遞增.所以,SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0.(Ⅱ)證明:記SKIPIF1<0.依題意及(Ⅰ),有SKIPIF1<0,從而SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0.因此,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,進(jìn)而SKIPIF1<0.所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(Ⅲ)證明:依題意,SKIPIF1<0,即SKIPIF1<0.記SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0.由SKIPIF1<0及(Ⅰ),得SKIPIF1<0.由(Ⅱ)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),因此SKIPIF1<0.又由(Ⅱ)知,SKIPIF1<0,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論