版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第09講函數(shù)的奇偶性與周期性【基礎知識全通關】1.函數(shù)的奇偶性奇偶性定義圖象特點偶函數(shù)如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)是偶函數(shù)關于y軸對稱奇函數(shù)如果對于函數(shù)f(x)的定義域內任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)是奇函數(shù)關于原點對稱2.函數(shù)的周期性(1)周期函數(shù):對于函數(shù)y=f(x),如果存在一個非零常數(shù)T,使得當x取定義域內的任何值時,都有f(x+T)=f(x),那么就稱函數(shù)y=f(x)為周期函數(shù),稱T為這個函數(shù)的周期.(2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期.【考點研習一點通】考點01:函數(shù)奇偶性的判斷【典例1】【多選題】(2021·浙江高一期末)下列函數(shù)中是偶函數(shù),且在SKIPIF1<0為增函數(shù)的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【解析】根據題意,依次分析選項中函數(shù)的奇偶性與單調性,綜合即可得答案.【詳解】解:根據題意,依次分析選項:對于SKIPIF1<0,SKIPIF1<0,偶函數(shù),且在SKIPIF1<0為增函數(shù),符合題意;對于SKIPIF1<0,SKIPIF1<0,不是偶函數(shù),不符合題意;對于SKIPIF1<0,SKIPIF1<0,是偶函數(shù),在SKIPIF1<0上為增函數(shù),故在SKIPIF1<0為增函數(shù),符合題意;對于SKIPIF1<0,SKIPIF1<0,是偶函數(shù),且在SKIPIF1<0為增函數(shù),符合題意;故選:SKIPIF1<0.【知識拓展】(1)奇、偶函數(shù)定義域的特點.由于f(x)和f(-x)須同時有意義,所以奇、偶函數(shù)的定義域關于原點對稱.這是函數(shù)具有奇偶性的必要不充分條件,所以首先考慮定義域;(2)奇、偶函數(shù)的對應關系的特點.①奇函數(shù)有f(-x)=-f(x)?f(-x)+f(x)=0?eq\f(f-x,fx)=-1(f(x)≠0);②偶函數(shù)有f(-x)=f(x)?f(-x)-f(x)=0?eq\f(f-x,fx)=1(f(x)≠0).(3)函數(shù)奇偶性的三個關注點.①若奇函數(shù)在原點處有定義,則必有f(0)=0.有時可以用這個結論來否定一個函數(shù)為奇函數(shù);②既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一種類型,即f(x)=0,x∈D,其中定義域D是關于原點對稱的非空集合;③函數(shù)根據奇偶性可分為奇函數(shù)、偶函數(shù)、既奇又偶函數(shù)、非奇非偶函數(shù).(4)奇、偶函數(shù)圖象對稱性的應用.①若一個函數(shù)的圖象關于原點對稱,則這個函數(shù)是奇函數(shù);②若一個函數(shù)的圖象關于y軸對稱,則這個函數(shù)是偶函數(shù).【典例2】【多選題】(2022·浙江杭州市·杭州高級中學高一月考)已知函數(shù)SKIPIF1<0的定義域都是R,且SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),則()A.SKIPIF1<0是奇函數(shù) B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0是偶函數(shù) D.SKIPIF1<0是偶函數(shù)【答案】AD【解析】由奇偶性的定義逐一證明即可.【詳解】對于A,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是奇函數(shù),故A正確;對于B,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是偶函數(shù),故B錯誤;對于C,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是奇函數(shù),故C錯誤;對于D,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是偶函數(shù),故D正確;故選:AD考點02:函數(shù)奇偶性的應用【典例3】(2021·黑龍江哈爾濱三中高三三模(文))已知函數(shù)SKIPIF1<0為奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由奇函數(shù)對稱性可得SKIPIF1<0,代入已知解析式解得SKIPIF1<0.【詳解】SKIPIF1<0函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0.又SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故選:B.【典例4】設f(x)為奇函數(shù),且當x≥0時,f(x)=,則當x<0時,f(x)=()A. B.C. D.【答案】D【解析】是奇函數(shù),x≥0時,.當時,,,得.故選D.【典例5】(2021·黑龍江齊齊哈爾市·高三三模(理))已知實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【解析】由SKIPIF1<0,可得SKIPIF1<0,構造函數(shù)SKIPIF1<0,由函數(shù)的奇偶性單調性,計算即可得出結果.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上為單調遞增的奇函數(shù),又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:4【總結提升】函數(shù)奇偶性的應用(1)求函數(shù)解析式①將所求解析式自變量的范圍轉化為已知解析式中自變量的范圍;②將轉化后的自變量代入已知解析式;③利用函數(shù)的奇偶性求出解析式.(2)求參數(shù)值在定義域關于原點對稱的前提下,根據奇函數(shù)滿足f(-x)=-f(x)或偶函數(shù)滿足f(-x)=f(x)列等式,根據等式兩側對應相等確定參數(shù)的值.特別要注意的是:若能夠確定奇函數(shù)的定義域中包含0,可以根據f(0)=0列式求解,若不能確定則不可用此法.考點03:函數(shù)周期性及其應用【典例6】(2021·山東青島市·高三二模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0的圖象連續(xù)不斷,有下列四個命題:甲:SKIPIF1<0是奇函數(shù);乙:SKIPIF1<0的圖象關于直線SKIPIF1<0對稱;丙:SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減;?。汉瘮?shù)SKIPIF1<0的周期為2.如果只有一個假命題,則該命題是()A.甲 B.乙 C.丙 D.丁【答案】D【解析】由函數(shù)的奇偶性、周期性、對稱性之間的相互關系可知,甲、乙、丁三者中必有一個錯誤,結合連續(xù)函數(shù)單調性的特征可知,丙、丁互相矛盾,進而可得結果.【詳解】由連續(xù)函數(shù)SKIPIF1<0的特征知:由于區(qū)間SKIPIF1<0的寬度為2,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞減與函數(shù)SKIPIF1<0的周期為2相互矛盾,即丙、丁中有一個為假命題;若甲、乙成立,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的周期為4,即丁為假命題.由于只有一個假命題,則可得該命題是丁,故選:D.【典例7】(2021·廣德市實驗中學高三月考(文))已知對SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據已知條件先分析出SKIPIF1<0為周期函數(shù)并求解出周期,然后根據周期性將SKIPIF1<0轉化為SKIPIF1<0進行計算即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0為周期函數(shù)且一個周期為SKIPIF1<0.∴SKIPIF1<0.故選:B.結論點睛:結論點睛:周期性常用的幾個結論如下:(1)SKIPIF1<0對SKIPIF1<0時,若SKIPIF1<0或SKIPIF1<0(SKIPIF1<0)恒成立,則SKIPIF1<0是SKIPIF1<0的一個周期;(2)SKIPIF1<0對SKIPIF1<0時,若SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(SKIPIF1<0)恒成立,則SKIPIF1<0是SKIPIF1<0的一個周期;(3)若SKIPIF1<0為偶函數(shù),其圖象又關于SKIPIF1<0對稱,則SKIPIF1<0是以SKIPIF1<0為一個周期的周期函數(shù);(4)若SKIPIF1<0為奇函數(shù),其圖象又關于SKIPIF1<0對稱,則SKIPIF1<0是以SKIPIF1<0為一個周期的周期函數(shù).【典例8】(2022·四川省石室中學高三一模(文))已知是定義域為的奇函數(shù),滿足,若,則()A. B. C. D.【答案】C【解析】由函數(shù)是定義域為的奇函數(shù),所以,且,又由,即,進而可得,所以函數(shù)是以4為周期的周期函數(shù),又由,可得,,則,所以.故選C.【規(guī)律方法】1.求函數(shù)周期的方法求一般函數(shù)周期常用遞推法和換元法,形如y=Asin(ωx+φ),用公式T=計算.遞推法:若f(x+a)=-f(x),則f(x+2a)=f[(x+a)+a]=-f(x+a)=f(x),所以周期T=2a.換元法:若f(x+a)=f(x-a),令x-a=t,x=t+a,則f(t)=f(t+2a),所以周期T=2a.2.判斷函數(shù)的周期只需證明f(x+T)=f(x)(T≠0)便可證明函數(shù)是周期函數(shù),且周期為T,函數(shù)的周期性常與函數(shù)的其他性質綜合命題.3.根據函數(shù)的周期性,可以由函數(shù)局部的性質得到函數(shù)的整體性質,在解決具體問題時,要注意結論:若T是函數(shù)的周期,則kT(k∈Z且k≠0)也是函數(shù)的周期.考點04:函數(shù)性質的綜合應用【典例9】(2022·山西省高三其他(文))已知函數(shù)是定義在R上的偶函數(shù),且在區(qū)間單調遞增,若實數(shù)a滿足,則a的取值范圍是()A. B. C. D.【答案】C【解析】因為函數(shù)f(x)是定義在R上的偶函數(shù),所以,則為,因為函數(shù)在區(qū)間上單調遞增,所以,解得,則a的取值范圍是,故選:C.【典例10】(2021·寧夏銀川市·賀蘭縣景博中學高三二模(文))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且滿足SKIPIF1<0,數(shù)列SKIPIF1<0是首項為SKIPIF1<0?公差為SKIPIF1<0的等差數(shù)列,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】利用函數(shù)的對稱性首先求出函數(shù)SKIPIF1<0是以2為周期的函數(shù),且SKIPIF1<0,而數(shù)列的通項公式為SKIPIF1<0,則可將所求轉化為SKIPIF1<0,再根據函數(shù)的奇偶性可得SKIPIF1<0,從而有SKIPIF1<0,即可求得結果.【詳解】∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0是以2為周期的函數(shù),而SKIPIF1<0,∴SKIPIF1<0,又∵數(shù)列SKIPIF1<0是首項為SKIPIF1<0?公差為SKIPIF1<0的等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),∴SKIPIF1<0,而SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:B.【典例11】【多選題】(2022·山東省高三其他)已知偶函數(shù)滿足,則下列說法正確的是().A.函數(shù)是以2為周期的周期函數(shù) B.函數(shù)是以4為周期的周期函數(shù)C.函數(shù)為奇函數(shù) D.函數(shù)為偶函數(shù)【答案】BC【解析】對于選項,∵函數(shù)為偶函數(shù),∴.∵,∴,則,即,∴,故函數(shù)是周期為4的周期函數(shù),由此可知選項A錯誤,選項B正確;對于選項,令,則.在中,將換為,得,∴,∴,則函數(shù)為奇函數(shù),所以選項C正確.對于選項,由題意不妨取滿足條件的函數(shù),則為奇函數(shù),所以選項D錯誤.故選:BC.【典例12】(2021·湖南高三三模)函數(shù)SKIPIF1<0的定義域為D,對D內的任意SKIPIF1<0,當SKIPIF1<0時,恒有SKIPIF1<0,則稱SKIPIF1<0為非減函數(shù).已知SKIPIF1<0是定義域為SKIPIF1<0的非減函數(shù),且滿足:①對任意SKIPIF1<0,SKIPIF1<0.②對任意SKIPIF1<0.則SKIPIF1<0的值為________.【答案】2【解析】分析所給條件,得到SKIPIF1<0的函數(shù)圖像在SKIPIF1<0關于SKIPIF1<0對稱,再由任意SKIPIF1<0得出SKIPIF1<0且SKIPIF1<0,又SKIPIF1<0為非減函數(shù)即可求得SKIPIF1<0時,必有SKIPIF1<0,據此即可得解.【詳解】根據題意,由對任意SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的函數(shù)圖像在SKIPIF1<0關于SKIPIF1<0對稱,令SKIPIF1<0可得SKIPIF1<0,又因為對任意SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0且SKIPIF1<0是定義域為SKIPIF1<0的非減函數(shù),所以當SKIPIF1<0時,必有SKIPIF1<0,又由于SKIPIF1<0的函數(shù)圖像關于SKIPIF1<0對稱,所以SKIPIF1<0時,也有SKIPIF1<0,SKIPIF1<0,故答案為:2.【典例13】(2022·重慶高三其他(文))定義在R上的奇函數(shù)滿足:,且當時,,若,則實數(shù)m的值為()A.2 B.1 C.0 D.-1【答案】B【解析】由為奇函數(shù)知,∴,即,∴,∴是周期為3的周期函數(shù),故,即,∴.故選:B.【規(guī)律方法】函數(shù)性質綜合應用問題的常見類型及解題策略(1)函數(shù)單調性與奇偶性的綜合.注意函數(shù)單調性及奇偶性的定義,以及奇、偶函數(shù)圖象的對稱性.(2)周期性與奇偶性的綜合.此類問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉化到已知解析式的函數(shù)定義域內求解.(3)單調性、奇偶性與周期性的綜合.解決此類問題通常先利用周期性轉化自變量所在的區(qū)間,然后利用奇偶性和單調性求解.(4)應用奇函數(shù)圖象關于原點對稱,偶函數(shù)圖象關于y軸對稱.【考點易錯】易錯01:函數(shù)奇偶性的判斷1.(2022·天津耀華中學高三月考)下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是()A. B.C. D.【答案】D【解析】易知和為奇函數(shù),為偶函數(shù).令,則,即且.所以為非奇非偶函數(shù).故選D.2.【多選題】(2021·全國高一課時練習)設f(x)為偶函數(shù),且在區(qū)間(-∞,0)內單調遞增,f(-2)=0,則下列區(qū)間中使得xf(x)<0的有()A.(-1,1) B.(0,2)C.(-2,0) D.(2,4)【答案】CD【解析】由偶函數(shù)的性質以及f(-2)=f(2)=0畫出函數(shù)f(x)的草圖,由xf(x)<0?SKIPIF1<0或SKIPIF1<0,結合圖象得出解集.【詳解】根據題意,偶函數(shù)f(x)在(-∞,0)上單調遞增,又f(-2)=0,則函數(shù)f(x)在(0,+∞)上單調遞減,且f(-2)=f(2)=0,函數(shù)f(x)的草圖如圖又由xf(x)<0?SKIPIF1<0或SKIPIF1<0由圖可得-2<x<0或x>2即不等式的解集為(-2,0)∪(2,+∞).故選:CD易錯02:函數(shù)奇偶性的應用3.(2022·廣東高考模擬(文))已知f(x)是定義在R上的奇函數(shù),滿足f(1+x)=f(1?x),且f(1)=a,則f(2)+f(3)+f(4)=()A.0 B.?a C.a D.3a【答案】B【解析】因為函數(shù)f(x)滿足f(1+x)=f(1?x),所以f(x)關于直線x=1對稱,所以f(2)=f(0),f(3)=f(?1)又f(x)是定義在R上的奇函數(shù),所以f(0)=0,又由f(1+x)=f(1?x)可得f(x+1)=f(1?x)=?f(x?1),所以f(x+2)=?f(x),故f(x+4)=?f(x+2)=f(x),因此,函數(shù)f(x)是以4為周期的周期函數(shù),所以f(4)=f(0),又f(1)=a因此f(2)+f(3)+f(4)=f(0)+f(?1)+f(0)=?f(1)=?a.故選B4.(2022·山東高考模擬(文))已知定義在上的奇函數(shù)滿足,當時,,則()A.2022 B.0 C.1 D.-1【答案】B【解析】由得:的周期為又為奇函數(shù),,,即:本題正確選項:易錯03:函數(shù)周期性及其應用5.(2022·山西省高三其他(文))已知函數(shù),,若,則實數(shù)的取值范圍是()A. B. C. D.【答案】B【解析】,由的解析式可知,在上是奇函數(shù)且單調遞增,為偶函數(shù),當時,有,任取,則,由不等式的性質可得,即,所以,函數(shù)在上遞增再由,得,得即,解得.故選:B.6.(2022·梅州市梅縣區(qū)松口中學高三月考(理))設是定義域為的偶函數(shù),且在單調遞減,則()A.B.C.D.【答案】C【解析】是R的偶函數(shù),.,又在(0,+∞)單調遞減,∴,,故選C.易錯04:函數(shù)性質的綜合應用7.(2022·江西省高三其他(理))已知函數(shù)SKIPIF1<0是定義域為SKIPIF1<0的偶函數(shù),且SKIPIF1<0在SKIPIF1<0上單調遞增,則不等式SKIPIF1<0的解集為____.【答案】SKIPIF1<0【解析】SKIPIF1<0函數(shù)SKIPIF1<0是定義域為SKIPIF1<0的偶函數(shù),SKIPIF1<0SKIPIF1<0可轉化為SKIPIF1<0,又SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調遞增,SKIPIF1<0SKIPIF1<0,兩邊平方解得:SKIPIF1<0,故SKIPIF1<0的解集為SKIPIF1<0.【鞏固提升】1.(2021·安徽高三三模(文))若把定義域為SKIPIF1<0的函數(shù)SKIPIF1<0的圖象沿x軸左右平移后,可以得到關于原點對稱的圖象,也可以得到關于SKIPIF1<0軸對稱的圖象,則關于函數(shù)SKIPIF1<0的性質敘述一定正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0是周期函數(shù) D.SKIPIF1<0存在單調遞增區(qū)間【答案】C【解析】通過舉例說明選項ABD錯誤;對于選項C可以證明判斷得解.【詳解】定義域為R的函數(shù)SKIPIF1<0的圖象沿SKIPIF1<0軸左右平移后,可以得到關于原點對稱的圖象,也可以得到關于SKIPIF1<0軸對稱的圖象,∴SKIPIF1<0的圖象既有對稱中心又有對稱軸,但SKIPIF1<0不一定具有奇偶性,例如SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0為奇函數(shù),故選項A錯誤;由SKIPIF1<0,可得函數(shù)SKIPIF1<0圖象關于SKIPIF1<0對稱,故選項B錯誤;由SKIPIF1<0時,SKIPIF1<0不存在單調遞增區(qū)間,故選項D錯誤;由已知設SKIPIF1<0圖象的一條對稱抽為直線SKIPIF1<0,一個對稱中心為SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的一個周期SKIPIF1<0,故選項C正確.故選:C2.(2021·海南??谑小じ呷渌M)已知函數(shù)SKIPIF1<0,則“SKIPIF1<0”是“函數(shù)SKIPIF1<0為奇函數(shù)”的()A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件【答案】C【解析】化簡“SKIPIF1<0”和“函數(shù)SKIPIF1<0為奇函數(shù)”,再利用充分必要條件的定義判斷得解.【詳解】SKIPIF1<0,所以SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0.所以“SKIPIF1<0”是“函數(shù)SKIPIF1<0為奇函數(shù)”的充分必要條件.故選:C3.(2021·陜西高三三模(理))已知函數(shù)f(x)為R上的奇函數(shù),且SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則f(101)+f(105)的值為()A.3 B.2 C.1 D.0【答案】A【解析】根據函數(shù)為奇函數(shù)可求得函數(shù)的解析式,再由SKIPIF1<0求得函數(shù)f(x)是周期為4的周期函數(shù),由此可計算得選項.【詳解】解:根據題意,函數(shù)f(x)為R上的奇函數(shù),則f(0)=0,又由x∈[0,1]時,SKIPIF1<0,則有f(0)=1+a=0,解可得:a=﹣1,則有SKIPIF1<0,又由f(﹣x)=f(2+x),即f(x+2)=﹣f(x),則有f(x+4)=﹣f(x+2)=f(x),即函數(shù)f(x)是周期為4的周期函數(shù),則SKIPIF1<0,故有f(101)+f(105)=3,故選:A.4.(2021·廣東高三其他模擬)下列函數(shù)中,既是奇函數(shù)又在區(qū)間SKIPIF1<0上單調遞增的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】利用函數(shù)奇偶性的定義和函數(shù)的解析式判斷.【詳解】A.函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,所以函數(shù)是非奇非偶函數(shù),故錯誤;B.SKIPIF1<0在SKIPIF1<0上單調遞減,故錯誤;C.因為SKIPIF1<0,所以函數(shù)是奇函數(shù),且在SKIPIF1<0上單調遞增,正確;D.因為SKIPIF1<0,所以函數(shù)是偶函數(shù),故錯誤;故選:C.5.【多選題】(2021·全國高三專題練習)已知函數(shù)SKIPIF1<0是偶函數(shù),SKIPIF1<0是奇函數(shù),并且當SKIPIF1<0,SKIPIF1<0,則下列選項正確的是()A.SKIPIF1<0在SKIPIF1<0上為減函數(shù) B.SKIPIF1<0在SKIPIF1<0上SKIPIF1<0C.SKIPIF1<0在SKIPIF1<0上為增函數(shù) D.SKIPIF1<0在SKIPIF1<0上SKIPIF1<0【答案】CD【解析】根據題意,分析可得SKIPIF1<0,結合函數(shù)的解析式可得當SKIPIF1<0時函數(shù)的解析式,據此分析可得答案.【詳解】解:根據題意,函數(shù)SKIPIF1<0為奇函數(shù),則有SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0為偶函數(shù),則SKIPIF1<0,則有SKIPIF1<0,即有SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則當SKIPIF1<0時,有SKIPIF1<0,則SKIPIF1<0為增函數(shù)且SKIPIF1<0;故SKIPIF1<0在SKIPIF1<0上為增函數(shù),且SKIPIF1<0;故選:SKIPIF1<0.6.【多選題】(2021·淮北市樹人高級中學高一期末)對于定義在R上的函數(shù)SKIPIF1<0,下列說法正確的是()A.若SKIPIF1<0是奇函數(shù),則SKIPIF1<0的圖像關于點SKIPIF1<0對稱B.若對SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0的圖像關于直線SKIPIF1<0對稱C.若函數(shù)SKIPIF1<0的圖像關于直線SKIPIF1<0對稱,則SKIPIF1<0為偶函數(shù)D.若SKIPIF1<0,則SKIPIF1<0的圖像關于點SKIPIF1<0對稱【答案】ACD【解析】四個選項都是對函數(shù)性質的應用,在給出的四個選項中靈活的把變量x加以代換,再結合函數(shù)的對稱性、周期性和奇偶性就可以得到正確答案.【詳解】對A,SKIPIF1<0是奇函數(shù),故圖象關于原點對稱,將SKIPIF1<0的圖象向右平移1個單位得SKIPIF1<0的圖象,故SKIPIF1<0的圖象關于點(1,0)對稱,正確;對B,若對SKIPIF1<0,有SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0是一個周期為2的周期函數(shù),不能說明其圖象關于直線SKIPIF1<0對稱,錯誤.;對C,若函數(shù)SKIPIF1<0的圖象關于直線SKIPIF1<0對稱,則SKIPIF1<0的圖象關于y軸對稱,故為偶函數(shù),正確;對D,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象關于(1,1)對稱,正確.故選:ACD.7.【多選題】(2021·浙江高一期末)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則下列說法正確的是()A.函數(shù)SKIPIF1<0有2個零點 B.當SKIPIF1<0時,SKIPIF1<0C.不等式SKIPIF1<0的解集是SKIPIF1<0 D.SKIPIF1<0,都有SKIPIF1<0【答案】BCD【解析】根據函數(shù)奇偶性定義和零點定義對選項一一判斷即可.【詳解】對A,當SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,又因為SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,故函數(shù)SKIPIF1<0有3個零點,則A錯;對B,設SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則B對;對C,當SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0;當SKIPIF1<0時,由SKIPIF1<0,得SKIPIF1<0無解;則C對;對D,SKIPIF1<0,都有SKIPIF1<0,則D對.故選:BCD.8.【多選題】(2021·廣東高三二模)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0都為奇函數(shù),則下列說法正確的是()A.SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù) B.SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù)C.SKIPIF1<0為奇函數(shù) D.SKIPIF1<0為奇函數(shù)【答案】BD【解析】AB選項,利用周期函數(shù)的定義判斷;CD選項,利用周期性結合SKIPIF1<0,SKIPIF1<0為奇函數(shù)判斷.【詳解】因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0都為奇函數(shù),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故B正確A錯誤;因為SKIPIF1<0,且SKIPIF1<0為奇函數(shù),所以SKIPIF1<0為奇函數(shù),故D正確;因為SKIPIF1<0與SKIPIF1<0相差1,不是最小周期的整數(shù)倍,且SKIPIF1<0為奇函數(shù),所以SKIPIF1<0不為奇函數(shù),故C錯誤.故選:BD.9.【多選題】(2021·湖南高三月考)函數(shù)SKIPIF1<0滿足以下條件:①SKIPIF1<0的定義域是SKIPIF1<0,且其圖象是一條連續(xù)不斷的曲線;②SKIPIF1<0是偶函數(shù);③SKIPIF1<0在SKIPIF1<0上不是單調函數(shù);④SKIPIF1<0恰有2個零點.則函數(shù)SKIPIF1<0的解析式可以是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【解析】利用函數(shù)圖象變換畫出選項A,B,C,D對應的函數(shù)圖象,逐一分析即可求解.【詳解】解:顯然題設選項的四個函數(shù)均為偶函數(shù),但SKIPIF1<0的定義域為SKIPIF1<0,所以選項B錯誤;函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,在SKIPIF1<0,SKIPIF1<0單調遞減,在SKIPIF1<0,SKIPIF1<0單調遞增,但SKIPIF1<0有3個零點,選項A錯誤;函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的圖象對稱軸為SKIPIF1<0,其圖象是開口向下的拋物線,故SKIPIF1<0在SKIPIF1<0,SKIPIF1<0單調遞增,在SKIPIF1<0,SKIPIF1<0單調遞減,由圖得SKIPIF1<0恰有2個零點,選項C正確;函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,在SKIPIF1<0,SKIPIF1<0單調遞減,在SKIPIF1<0,SKIPIF1<0單調遞增,且SKIPIF1<0有2個零點,選項D正確.故選:CD.10.設函數(shù)SKIPIF1<0,則f(x)()A.是偶函數(shù),且在SKIPIF1<0單調遞增 B.是奇函數(shù),且在SKIPIF1<0單調遞減C.是偶函數(shù),且在SKIPIF1<0單調遞增 D.是奇函數(shù),且在SKIPIF1<0單調遞減【答案】D【解析】由SKIPIF1<0得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 技術創(chuàng)新與養(yǎng)老行業(yè)的融合
- 個人固定資產借款合同范文
- 土方運輸承包合同范本
- 農產品經銷合同書
- 牛羊肉購銷合同協(xié)議書模板范本
- 凈水器購銷合同模板
- 合同范本產品銷售合同
- 合同違約責任條款
- 煤礦井下飛行巡檢機器人的研究與應用展望
- 安裝合同范本 標準版
- 《財務管理學(第10版)》課件 第5、6章 長期籌資方式、資本結構決策
- 房屋永久居住權合同模板
- 醫(yī)院納入定點后使用醫(yī)療保障基金的預測性分析報告
- 初中英語不規(guī)則動詞表(譯林版-中英)
- 2024年3月四川省公務員考試面試題及參考答案
- 新生兒黃疸早期識別課件
- 醫(yī)藥營銷團隊建設與管理
- 二年級數(shù)學上冊口算題100道(全冊完整)
- 冷軋工程專業(yè)詞匯匯編注音版
- 小升初幼升小擇校畢業(yè)升學兒童簡歷
- 第一單元(金融知識進課堂)課件
評論
0/150
提交評論