版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省宣化一中、張北一中2023-2024學年高三下學期數學試題統練(七)(期中模擬)注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若向量,,則與共線的向量可以是()A. B. C. D.2.已知數列為等差數列,為其前項和,,則()A. B. C. D.3.已知函數,且),則“在上是單調函數”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件4.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.5.已知向量,,則向量在向量上的投影是()A. B. C. D.6.已知,,分別是三個內角,,的對邊,,則()A. B. C. D.7.函數的圖象大致為()A. B.C. D.8.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.9.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.410.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.11.設,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.已知等差數列的前項和為,,,則()A.25 B.32 C.35 D.40二、填空題:本題共4小題,每小題5分,共20分。13.從一箱產品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產品不是一等品”的概率為________14.設函數,當時,記最大值為,則的最小值為______.15.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.16.已知等比數列的各項都是正數,且成等差數列,則=__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若關于的不等式的整數解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數的取值范圍.18.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.19.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數滿足.證明:.20.(12分)已知集合,集合.(1)求集合;(2)若,求實數的取值范圍.21.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.22.(10分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當的面積取得最大值時,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.2、B【解析】
利用等差數列的性質求出的值,然后利用等差數列求和公式以及等差中項的性質可求出的值.【詳解】由等差數列的性質可得,.故選:B.【點睛】本題考查等差數列基本性質的應用,同時也考查了等差數列求和,考查計算能力,屬于基礎題.3、C【解析】
先求出復合函數在上是單調函數的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數,其充要條件為即.故選:C.【點睛】本題考查了復合函數的單調性的判斷問題,充要條件的判斷,屬于基礎題.4、D【解析】
設出的坐標為,依據題目條件,求出點的軌跡方程,寫出點的參數方程,則,根據余弦函數自身的范圍,可求得結果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數方程為(為參數)則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據條件求解各種軌跡方程的能力,熟練掌握代數式轉換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數法;⑤待定系數法5、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數學運算的能力,屬于中檔題.6、C【解析】
原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.7、A【解析】
用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.8、D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數形結合思想,以及推理與計算能力,屬于基礎題.9、D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現,由此可得結論.【詳解】;如此循環(huán)下去,當時,,此時不滿足,循環(huán)結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.10、A【解析】
觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【詳解】設半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。11、C【解析】
根據充分條件和必要條件的定義結合對數的運算進行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點睛】本題主要考查充分條件和必要條件的判斷,根據不等式的解法是解決本題的關鍵.12、C【解析】
設出等差數列的首項和公差,即可根據題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數列的通項公式的求法和應用,涉及等差數列的前項和公式的應用,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、0.35【解析】
根據對立事件的概率和為1,結合題意,即可求出結果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.【點睛】本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎題.14、【解析】
易知,設,,利用絕對值不等式的性質即可得解.【詳解】,設,,令,當時,,所以單調遞減令,當時,,所以單調遞增所以當時,,,則則,即故答案為:.【點睛】本題考查函數最值的求法,考查絕對值不等式的性質,考查轉化思想及邏輯推理能力,屬于難題.15、【解析】
由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.16、【解析】
根據等差中項性質,結合等比數列通項公式即可求得公比;代入表達式,結合對數式的化簡即可求解.【詳解】等比數列的各項都是正數,且成等差數列,則,由等比數列通項公式可知,所以,解得或(舍),所以由對數式運算性質可得,故答案為:.【點睛】本題考查了等差數列通項公式的簡單應用,等比數列通項公式的用法,對數式的化簡運算,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)求解不等式,結合整數解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉化,使得成立為,利用不等式性質,求解二次函數最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數的取值范圍為.【點睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學生轉化劃歸,分類討論,數學運算的能力,屬于中檔題.18、(1):,直線:;(2).【解析】
(1)由消參法把參數方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數,從而可得最大值、【詳解】(1)消去參數可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標方程是;由,化為直角坐標方程為.(2)設,則,,,當時,取得最大值為.【點睛】本題考查參數方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化.19、(1)或;(2)見解析【解析】
(1)根據,利用零點分段法解不等式,或作出函數的圖像,利用函數的圖像解不等式;(2)由(1)作出的函數圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1°時,,即,解得;2°時,,即,解得;3°時,,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調遞減,在上單調遞增,所以,正實數滿足,則,即,(當且僅當即時取等號)故,得證.【點睛】此題考查了絕對值不等式的解法,絕對值不等式的性質和均值不等式的運用,考查了分類討論思想和轉化思想,屬于中檔題.20、(1);(2).【解析】
(1)求出函數的定義域,即可求出結論;(2)化簡集合,根據確定集合的端點位置,建立的不等量關系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實數的取值范圍為.【點睛】本題考查集合的運算,集合間的關系求參數,考查函數的定義域,屬于基礎題.21、(1)見證明;(2)【解析】
(1)設是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標原點,的方向為軸的正方向,建空間直角坐標系,分別計算各個點坐標,計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設是的中點,連接、,是的中點,,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點作,垂足為,平面,以為坐標原點,的方向為軸的正方向,建立如圖的空間直角坐標系,則,,,,設是平面的一個法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面垂直,線線垂直,利用空間直角坐標系解決線面夾角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年玉林貨運從業(yè)資格仿真考題
- 2024商標轉讓及品牌升級合同:攜手共進品牌升級之旅3篇
- 2024商混合同范本:商混混凝土生產與質量控制合作協議3篇
- 2025廚房設備銷售合同版
- 商業(yè)綜合體電力施工合同范本
- 城市公園旁咖啡館租賃合同
- 城市綠化帶擴建植樹合同
- 出入境文件公證辦理規(guī)范
- 智能家居維修員招聘合同模板
- 汽車研發(fā)中心施工協議
- 鈸式換能器的共振特性研究
- 《我們去看?!烽喿x答案
- 智慧酒店無人酒店綜合服務解決方案
- 考研英語一新題型歷年真題(2005-2012)
- 健身房會籍顧問基礎培訓資料
- 9脊柱與四肢、神經系統檢查總結
- 秀場內外-走進服裝表演藝術智慧樹知到答案章節(jié)測試2023年武漢紡織大學
- 【高分復習筆記】王建《現代自然地理學》(第2版)筆記和課后習題詳解
- TSGD0012023年壓力管道安全技術監(jiān)察規(guī)程-工業(yè)管道(高清晰版)
- SMM英國建筑工程標準計量規(guī)則中文 全套
- 2023-2024學年浙江省富陽市小學數學四年級上冊期末通關題
評論
0/150
提交評論