




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省鄒城一中2025屆高考數(shù)學(xué)一模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點的直線交該拋物線于,兩點,為坐標(biāo)原點.若,則直線的斜率為()A. B. C. D.2.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠地點離地面的距離為()A. B.C. D.3.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.4.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.16.已知集合,集合,則A. B.或C. D.7.已知的展開式中的常數(shù)項為8,則實數(shù)()A.2 B.-2 C.-3 D.38.是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.設(shè),分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.10.費馬素數(shù)是法國大數(shù)學(xué)家費馬命名的,形如的素數(shù)(如:)為費馬索數(shù),在不超過30的正偶數(shù)中隨機選取一數(shù),則它能表示為兩個不同費馬素數(shù)的和的概率是()A. B. C. D.11.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.12.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.14.記等差數(shù)列和的前項和分別為和,若,則______.15.在數(shù)列中,,則數(shù)列的通項公式_____.16.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點的極坐標(biāo)為.(1)求的直角坐標(biāo)方程和的直角坐標(biāo);(2)設(shè)與交于,兩點,線段的中點為,求.18.(12分)某調(diào)查機構(gòu)為了了解某產(chǎn)品年產(chǎn)量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:x12345y17.016.515.513.812.2(1)求y關(guān)于x的線性回歸方程;(2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時,年利潤w取到最大值?參考公式:19.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時,證明:.20.(12分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)寫出圓C的直角坐標(biāo)方程;(2)設(shè)直線l與圓C交于A,B兩點,,求的值.21.(12分)曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線,的交點分別為、(、異于原點),當(dāng)斜率時,求的最小值.22.(10分)已知函數(shù),(Ⅰ)當(dāng)時,證明;(Ⅱ)已知點,點,設(shè)函數(shù),當(dāng)時,試判斷的零點個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點,準(zhǔn)線方程為,設(shè),則,故,此時,即.則直線的斜率.故選:D.【點睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.2、A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.3、A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.4、B【解析】
求出復(fù)數(shù),得出其對應(yīng)點的坐標(biāo),確定所在象限.【詳解】由題意,對應(yīng)點坐標(biāo)為,在第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.5、C【解析】
連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.6、C【解析】
由可得,解得或,所以或,又,所以,故選C.7、A【解析】
先求的展開式,再分類分析中用哪一項與相乘,將所有結(jié)果為常數(shù)的相加,即為展開式的常數(shù)項,從而求出的值.【詳解】展開式的通項為,當(dāng)取2時,常數(shù)項為,當(dāng)取時,常數(shù)項為由題知,則.故選:A.【點睛】本題考查了兩個二項式乘積的展開式中的系數(shù)問題,其中對所取的項要進行分類討論,屬于基礎(chǔ)題.8、D【解析】
求出復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo),即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標(biāo)為,該點位于第四象限.故選:D.【點睛】本題考查復(fù)數(shù)對應(yīng)的點的位置的判斷,屬于基礎(chǔ)題.9、C【解析】
根據(jù)表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構(gòu)造出關(guān)系,求出離心率.【詳解】設(shè),則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關(guān)系,構(gòu)造出關(guān)系,得到離心率.屬于中檔題.10、B【解析】
基本事件總數(shù),能表示為兩個不同費馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機選取一數(shù),基本事件總數(shù)能表示為兩個不同費馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費馬素數(shù)的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.11、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.12、D【解析】
根據(jù)復(fù)數(shù)運算,求得,再求其對應(yīng)點即可判斷.【詳解】,故其對應(yīng)點的坐標(biāo)為.其位于第四象限.故選:D.【點睛】本題考查復(fù)數(shù)的運算,以及復(fù)數(shù)對應(yīng)點的坐標(biāo),屬綜合基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.14、【解析】
結(jié)合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應(yīng)用,考查了學(xué)生的計算求解能力,屬于基礎(chǔ)題.15、【解析】
由題意可得,又,數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,對分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,∴當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,則為奇數(shù),∴,∴數(shù)列的通項公式,故答案為:.【點睛】本題考查求數(shù)列的通項公式,解題關(guān)鍵是由已知遞推關(guān)系得出,從而確定數(shù)列的奇數(shù)項成等差數(shù)列,求出通項公式后再由已知求出偶數(shù)項,要注意結(jié)果是分段函數(shù)形式.16、【解析】
先求角,再用余弦定理找到邊的關(guān)系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應(yīng)用以及三條線段構(gòu)成三角形的條件;基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)利用互化公式把曲線C化成直角坐標(biāo)方程,把點P的極坐標(biāo)化成直角坐標(biāo);(2)把直線l的參數(shù)方程的標(biāo)準(zhǔn)形式代入曲線C的直角坐標(biāo)方程,根據(jù)韋達定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標(biāo)方程為y2=1,設(shè)點P的直角坐標(biāo)為(x,y),因為P的極坐標(biāo)為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點P的直角坐標(biāo)為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因為△=1102﹣4×41×25=8000>0,故可設(shè)方程的兩根為t1,t2,則t1,t2為A,B對應(yīng)的參數(shù),且t1+t2,依題意,點M對應(yīng)的參數(shù)為,所以|PM|=||.【點睛】本題考查了簡單曲線的極坐標(biāo)方程,屬中檔題.18、(1)(2)當(dāng)時,年利潤最大.【解析】
(1)方法一:令,先求得關(guān)于的回歸直線方程,由此求得關(guān)于的回歸直線方程.方法二:根據(jù)回歸直線方程計算公式,計算出回歸直線方程.方法一的好處在計算的數(shù)值較小.(2)求得w的表達式,根據(jù)二次函數(shù)的性質(zhì)作出預(yù)測.【詳解】(1)方法一:取,則得與的數(shù)據(jù)關(guān)系如下123457.06.55.53.82.2,,,.,,關(guān)于的線性回歸方程是即,故關(guān)于的線性回歸方程是.方法二:因為,,,,,所以,故關(guān)于的線性回歸方程是,(2)年利潤,根據(jù)二次函數(shù)的性質(zhì)可知:當(dāng)時,年利潤最大.【點睛】本小題主要考查回歸直線方程的求法,考查利用回歸直線方程進行預(yù)測,考查運算求解能力,屬于中檔題.19、(1)(2)證明見解析【解析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.所以是的最大值點,所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.所以是的最小值點,,則,故.【點睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.20、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直線參數(shù)方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標(biāo)方程為,即.(2)將直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得,即,設(shè)兩交點A,B所對應(yīng)的參數(shù)分別為,,從而,則.【點睛】本題考查了極坐標(biāo)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學(xué)生的計算能力,是一道容易題.21、(1)的極坐標(biāo)方程為;曲線的直角坐標(biāo)方程.(2)【解析】
(1)消去參數(shù),可得曲線的直角坐標(biāo)方程,再利用極坐標(biāo)與直角坐標(biāo)的互化,即可求解.(2)解法1:設(shè)直線的傾斜角為,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,求得,再把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程,得,得出,利用基本不等式,即可求解;解法2:設(shè)直線的極坐標(biāo)方程為,分別代入曲線,的極坐標(biāo)方程,得,,得出,即可基本不等式,即可求解.【詳解】(1)由題曲線的參數(shù)方程為(為參數(shù)),消去參數(shù),可得曲線的直角坐標(biāo)方程為,即,則曲線的極坐標(biāo)方程為,即,又因為曲線的極坐標(biāo)方程為,即,根據(jù),代入即可求解曲線的直角坐標(biāo)方程.(2)解法1:設(shè)直線的傾斜角為,則直線的參數(shù)方程為(為參數(shù),),把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,,,把直線的參數(shù)方程代入曲線的普通坐標(biāo)方程得:,解得,,,,,即,,,,當(dāng)且僅當(dāng),即時取等號,故的最小值為.解法2:設(shè)直線的極坐標(biāo)方程為),代入曲線的極坐標(biāo)方程,得,,把直線的參數(shù)方程代入曲線的極坐標(biāo)方程得:,,即,,曲線的參,即,,,,當(dāng)且僅當(dāng),即時取等號,故的最小值為.【點睛】本題主要考查了參數(shù)方程與普通方程,以及極坐標(biāo)方程與直角坐標(biāo)方程點互化,以及直線參數(shù)方程的應(yīng)用和極坐標(biāo)方程的應(yīng)用,其中解答中熟記互化公式,合理應(yīng)用直線的參數(shù)方程中參數(shù)的幾何意義
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年結(jié)核病工作方案
- 護理科研項目立項申請匯報
- 精神障礙病人心理護理
- 2025年深圳圣誕節(jié)活動策劃方案
- 2025年七一建黨節(jié)活動方案策劃
- zgf前線餐廳招聘策略及技巧P48
- 皖西衛(wèi)生職業(yè)學(xué)院《車輛結(jié)構(gòu)與原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州省遵義市2024-2025學(xué)年高三三模數(shù)學(xué)試題含解析
- 漢江師范學(xué)院《高級口語》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年上海市松江區(qū)統(tǒng)考高三下學(xué)期第二次周練數(shù)學(xué)試題試卷含解析
- 管道溝槽開挖專項施工方案
- 廣州新華學(xué)院
- 部編版七年級下冊道法期中試卷1
- 知識圖譜-課件
- 百年戰(zhàn)爭簡史
- 2023年托幼機構(gòu)幼兒園衛(wèi)生保健人員考試題庫及參考答案
- 2023年IDSA念珠菌病指南中文翻譯
- 天生為鹵人生為鹽 課件
- 中醫(yī)護理耳穴壓豆課件
- YS/T 713-2009干式變壓器用鋁帶、箔材
- 老年人常見病防治與中醫(yī)養(yǎng)生課件
評論
0/150
提交評論