版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)北京理工大學(xué)《數(shù)據(jù)分析與大數(shù)據(jù)技術(shù)的數(shù)學(xué)基礎(chǔ)》
2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析的深度學(xué)習(xí)模型中,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的描述,不準(zhǔn)確的是()A.CNN適用于處理圖像和音頻等具有空間結(jié)構(gòu)的數(shù)據(jù)B.CNN通過(guò)卷積層和池化層自動(dòng)提取特征C.CNN的訓(xùn)練需要大量的數(shù)據(jù)和較高的計(jì)算資源D.CNN不能用于文本數(shù)據(jù)的處理2、當(dāng)分析數(shù)據(jù)的相關(guān)性時(shí),以下哪個(gè)統(tǒng)計(jì)量的值在-1到1之間?()A.協(xié)方差B.相關(guān)系數(shù)C.決定系數(shù)D.方差3、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架如Hadoop被廣泛應(yīng)用。假設(shè)要對(duì)數(shù)十億行的日志數(shù)據(jù)進(jìn)行分析,以下哪個(gè)Hadoop組件可能主要負(fù)責(zé)數(shù)據(jù)的存儲(chǔ)?()A.HDFSB.MapReduceC.YARND.Hive4、在數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是一種常用的統(tǒng)計(jì)方法。假設(shè)要檢驗(yàn)一種新的教學(xué)方法是否能顯著提高學(xué)生的成績(jī),以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.首先需要提出原假設(shè)和備擇假設(shè),然后根據(jù)樣本數(shù)據(jù)計(jì)算檢驗(yàn)統(tǒng)計(jì)量B.如果p值小于預(yù)先設(shè)定的顯著性水平,就拒絕原假設(shè),認(rèn)為新教學(xué)方法有效C.假設(shè)檢驗(yàn)的結(jié)果完全取決于樣本數(shù)據(jù)的大小和分布,與研究問(wèn)題的實(shí)際情況無(wú)關(guān)D.可以通過(guò)控制樣本量和顯著性水平來(lái)平衡檢驗(yàn)的靈敏度和特異性5、數(shù)據(jù)分析中的倫理和道德問(wèn)題也需要引起關(guān)注。假設(shè)要使用個(gè)人數(shù)據(jù)進(jìn)行分析,以下關(guān)于倫理和道德原則的描述,正確的是:()A.未經(jīng)用戶授權(quán),擅自使用個(gè)人數(shù)據(jù)進(jìn)行分析B.不明確告知用戶數(shù)據(jù)的使用目的和方式,侵犯用戶知情權(quán)C.遵循合法、公正、透明、最小化使用和安全保障等原則,在獲得用戶明確授權(quán)的前提下,合理使用個(gè)人數(shù)據(jù),并采取措施保護(hù)用戶隱私和權(quán)益D.認(rèn)為數(shù)據(jù)分析中的倫理和道德問(wèn)題不重要,只要能得到有價(jià)值的結(jié)果就行6、假設(shè)要分析股票市場(chǎng)數(shù)據(jù)的波動(dòng)性,以下關(guān)于波動(dòng)性分析方法的描述,正確的是:()A.計(jì)算簡(jiǎn)單移動(dòng)平均就能準(zhǔn)確衡量股票價(jià)格的波動(dòng)性B.標(biāo)準(zhǔn)差越大,說(shuō)明股票價(jià)格的波動(dòng)性越小C.歷史波動(dòng)率對(duì)預(yù)測(cè)未來(lái)股票價(jià)格的波動(dòng)沒(méi)有參考價(jià)值D.采用ARCH和GARCH模型可以更好地捕捉股票價(jià)格波動(dòng)的聚類性和異方差性7、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要將來(lái)自不同數(shù)據(jù)庫(kù)的客戶信息和交易數(shù)據(jù)集成,以下哪個(gè)問(wèn)題可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)格式不一致B.數(shù)據(jù)字段的命名差異C.數(shù)據(jù)的重復(fù)和沖突D.以上問(wèn)題都很具有挑戰(zhàn)性8、數(shù)據(jù)分析中的主成分分析(PCA)用于數(shù)據(jù)降維。假設(shè)要對(duì)一個(gè)高維的數(shù)據(jù)集進(jìn)行降維,以下關(guān)于主成分分析的描述,哪一項(xiàng)是不正確的?()A.主成分是原始變量的線性組合,能夠保留數(shù)據(jù)的大部分方差B.通過(guò)選擇前幾個(gè)主成分,可以在減少數(shù)據(jù)維度的同時(shí)盡量保持?jǐn)?shù)據(jù)的重要信息C.主成分分析可以消除變量之間的相關(guān)性,但可能會(huì)導(dǎo)致數(shù)據(jù)的物理意義變得不明確D.主成分分析適用于任何類型的數(shù)據(jù),不需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和標(biāo)準(zhǔn)化9、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì),以下關(guān)于數(shù)據(jù)可視化的描述,哪一項(xiàng)是不正確的?()A.可以使用折線圖清晰地呈現(xiàn)經(jīng)濟(jì)指標(biāo)隨時(shí)間的變化B.柱狀圖能夠有效地對(duì)比不同地區(qū)在特定時(shí)間點(diǎn)的經(jīng)濟(jì)數(shù)值C.為了使圖表更美觀,可以添加過(guò)多的裝飾元素,即使這可能會(huì)干擾數(shù)據(jù)的解讀D.選擇合適的顏色和標(biāo)記,能夠增強(qiáng)圖表的可讀性和吸引力10、假設(shè)要從多個(gè)數(shù)據(jù)分析模型中選擇最優(yōu)的一個(gè),以下關(guān)于模型選擇的描述,正確的是:()A.選擇模型參數(shù)最多的那個(gè),因?yàn)樗鼜?fù)雜,性能更好B.根據(jù)訓(xùn)練集上的表現(xiàn)來(lái)選擇模型,無(wú)需考慮測(cè)試集C.綜合考慮模型的復(fù)雜度、準(zhǔn)確性和泛化能力來(lái)做出選擇D.只要模型在某個(gè)特定指標(biāo)上表現(xiàn)出色,就選擇該模型11、數(shù)據(jù)分析中,數(shù)據(jù)挖掘技術(shù)可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和規(guī)律。以下關(guān)于數(shù)據(jù)挖掘的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以使用多種算法,如決策樹(shù)、聚類、關(guān)聯(lián)規(guī)則挖掘等B.數(shù)據(jù)挖掘的結(jié)果需要進(jìn)行解釋和評(píng)估,以確定其有效性和實(shí)用性C.數(shù)據(jù)挖掘只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集沒(méi)有太大作用D.數(shù)據(jù)挖掘可以幫助企業(yè)做出更明智的決策,提高競(jìng)爭(zhēng)力12、在多變量數(shù)據(jù)分析中,主成分分析(PCA)是一種常用的方法。假設(shè)你有一組包含多個(gè)相關(guān)變量的數(shù)據(jù),以下關(guān)于PCA應(yīng)用的目的,哪一項(xiàng)是最準(zhǔn)確的?()A.減少變量數(shù)量,同時(shí)保留大部分?jǐn)?shù)據(jù)的方差B.找到變量之間的線性關(guān)系C.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理D.直接用于預(yù)測(cè)未知數(shù)據(jù)13、對(duì)于一個(gè)包含多個(gè)數(shù)值型變量的數(shù)據(jù)集,若要判斷數(shù)據(jù)是否符合正態(tài)分布,應(yīng)采用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.卡方檢驗(yàn)C.正態(tài)性檢驗(yàn)D.F檢驗(yàn)14、在數(shù)據(jù)分析的異常檢測(cè)中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測(cè)方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.基于距離的方法,計(jì)算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測(cè),認(rèn)為所有交易都是正常的15、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個(gè)假設(shè)。假設(shè)我們要檢驗(yàn)一種新的營(yíng)銷策略是否有效。以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不正確的?()A.零假設(shè)通常表示沒(méi)有差異或沒(méi)有效果B.通過(guò)計(jì)算檢驗(yàn)統(tǒng)計(jì)量和p值來(lái)決定是否拒絕零假設(shè)C.p值越小,說(shuō)明拒絕零假設(shè)的證據(jù)越充分D.假設(shè)檢驗(yàn)的結(jié)果一定能夠準(zhǔn)確地反映實(shí)際情況,不存在誤差16、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是必不可少的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)集成等多個(gè)環(huán)節(jié)B.數(shù)據(jù)預(yù)處理的目的是提高數(shù)據(jù)的質(zhì)量,為后續(xù)分析提供更好的數(shù)據(jù)基礎(chǔ)C.數(shù)據(jù)預(yù)處理可以使用自動(dòng)化工具和算法,也可以手動(dòng)進(jìn)行處理D.數(shù)據(jù)預(yù)處理只需要在數(shù)據(jù)分析的開(kāi)始階段進(jìn)行,一旦完成就不需要再進(jìn)行調(diào)整17、在處理數(shù)據(jù)時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行歸一化,使其值在0到1之間,以下哪個(gè)公式可以實(shí)現(xiàn)?()A.x-min(x)/(max(x)-min(x))B.(x-μ)/σC.x/sum(x)D.以上都不是18、對(duì)于數(shù)據(jù)可視化,假設(shè)要展示不同地區(qū)在過(guò)去十年間的經(jīng)濟(jì)增長(zhǎng)趨勢(shì)。數(shù)據(jù)涵蓋多個(gè)指標(biāo),且地區(qū)之間存在較大差異。為了清晰、直觀地呈現(xiàn)數(shù)據(jù)的變化和對(duì)比,以下哪種可視化圖表可能是最適合的?()A.柱狀圖,分別展示每個(gè)地區(qū)每年的經(jīng)濟(jì)數(shù)據(jù)B.折線圖,呈現(xiàn)每個(gè)地區(qū)經(jīng)濟(jì)數(shù)據(jù)隨時(shí)間的變化C.餅圖,展示各地區(qū)在某一年的經(jīng)濟(jì)占比D.箱線圖,反映數(shù)據(jù)的分布情況19、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行缺失值處理,同時(shí)考慮數(shù)據(jù)的分布特征,以下哪種方法較為合適?()A.隨機(jī)森林插補(bǔ)B.基于聚類的插補(bǔ)C.基于回歸的插補(bǔ)D.以上都不是20、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機(jī)抽樣是一種常用的方法。以下關(guān)于隨機(jī)抽樣的描述中,錯(cuò)誤的是?()A.隨機(jī)抽樣可以保證樣本的代表性和隨機(jī)性B.隨機(jī)抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機(jī)抽樣可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性D.隨機(jī)抽樣只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集無(wú)法使用二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述數(shù)據(jù)分析中的可解釋性機(jī)器學(xué)習(xí)模型,如線性回歸、決策樹(shù)等的優(yōu)點(diǎn)和局限性,并說(shuō)明如何提高復(fù)雜模型的可解釋性。2、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行模型的選擇和比較,包括不同模型的性能評(píng)估指標(biāo)和可視化方法,并舉例分析。3、(本題5分)異常檢測(cè)在數(shù)據(jù)分析中具有重要意義,請(qǐng)闡述常見(jiàn)的異常檢測(cè)算法,如基于統(tǒng)計(jì)的方法、基于距離的方法等的原理和應(yīng)用場(chǎng)景。4、(本題5分)闡述因子分析的原理和應(yīng)用,說(shuō)明如何通過(guò)因子分析提取公共因子,并解釋因子得分的計(jì)算和意義。5、(本題5分)解釋數(shù)據(jù)可視化中的色彩運(yùn)用原則,說(shuō)明如何選擇合適的色彩來(lái)增強(qiáng)數(shù)據(jù)可視化的效果,并避免色彩誤導(dǎo)。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一家童裝店擁有銷售數(shù)據(jù)、兒童身高體重分布、款式流行趨勢(shì)等。采購(gòu)適合不同年齡段兒童的時(shí)尚童裝。2、(本題5分)某在線房產(chǎn)中介平臺(tái)積累了房源數(shù)據(jù)、客戶需求、成交情況等。提高房產(chǎn)交易的效率和客戶滿意度。3、(本題5分)某網(wǎng)約車平臺(tái)的拼車服務(wù)存有數(shù)據(jù),包括拼車人數(shù)、行程路線、費(fèi)用分?jǐn)?、用戶滿意度等。分析拼車人數(shù)和行程路線對(duì)費(fèi)用分?jǐn)偤陀脩魸M意度的影響。4、(本題5分)某在線親子活動(dòng)平臺(tái)收集了活動(dòng)報(bào)名數(shù)據(jù)、用戶評(píng)價(jià)、活動(dòng)類型偏好等。策劃更受親子家庭歡迎的活動(dòng)。5、(本題5分)某在線旅游平臺(tái)掌握了不同目的地的旅游產(chǎn)品預(yù)訂數(shù)據(jù)、用戶評(píng)價(jià)、旅游淡旺季等信息。研究怎樣利用這些數(shù)據(jù)進(jìn)行目的地營(yíng)銷和產(chǎn)品優(yōu)化。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)隨著共享經(jīng)濟(jì)的興起,共享平臺(tái)積累了大量的用戶使用數(shù)據(jù)和運(yùn)營(yíng)數(shù)據(jù)。論述如何通過(guò)數(shù)據(jù)分析技術(shù),像供需匹配優(yōu)化、用戶信用評(píng)估等,提升共享經(jīng)濟(jì)的服務(wù)質(zhì)量和運(yùn)營(yíng)效率,同時(shí)思考在數(shù)據(jù)壟斷風(fēng)險(xiǎn)、平臺(tái)規(guī)則公平性和社會(huì)影
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《客戶跟蹤技巧》課件
- 《chapter固定資產(chǎn)》課件
- 《肩關(guān)節(jié)鏡簡(jiǎn)介》課件
- 單位管理制度合并選集【人事管理篇】
- 2024第八屆全國(guó)職工職業(yè)技能大賽(網(wǎng)約配送員)網(wǎng)上練兵考試題庫(kù)-中(多選題)
- 單位管理制度分享匯編人事管理篇
- 單位管理制度分享大全人力資源管理篇十篇
- 單位管理制度范例選集人力資源管理篇十篇
- 單位管理制度呈現(xiàn)合集人事管理十篇
- 《電子欺騙》課件
- 人教版八年級(jí)音樂(lè)上冊(cè) 第一單元 《拉起手》 教案
- 《馬克思主義基本原理》學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 《旅游大數(shù)據(jù)》-課程教學(xué)大綱
- 工藝以及質(zhì)量保證措施,工程實(shí)施的重點(diǎn)、難點(diǎn)分析和解決方案
- 七年級(jí)上冊(cè)道德與法治第1-4單元共4個(gè)單元復(fù)習(xí)教學(xué)設(shè)計(jì)
- SY-T 5412-2023 下套管作業(yè)規(guī)程
- 四色安全風(fēng)險(xiǎn)空間分布圖設(shè)計(jì)原則和要求
- 八年級(jí)化學(xué)下冊(cè)期末試卷及答案【完整版】
- 合伙人散伙分家協(xié)議書范文
- 紅色旅游智慧樹(shù)知到期末考試答案章節(jié)答案2024年南昌大學(xué)
- CBT3780-1997 管子吊架行業(yè)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論