版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共7頁(yè)電子科技大學(xué)中山學(xué)院
《視覺(jué)傳達(dá)設(shè)計(jì)》2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺(jué)中的場(chǎng)景理解是理解圖像或視頻中的場(chǎng)景內(nèi)容和語(yǔ)義信息。假設(shè)要理解一張城市街道的圖像,以下關(guān)于場(chǎng)景理解方法的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)對(duì)象檢測(cè)、語(yǔ)義分割和場(chǎng)景分類(lèi)等任務(wù)來(lái)實(shí)現(xiàn)場(chǎng)景理解B.結(jié)合上下文信息和先驗(yàn)知識(shí)能夠提高場(chǎng)景理解的準(zhǔn)確性C.深度學(xué)習(xí)模型能夠?qū)W習(xí)場(chǎng)景中的全局特征和關(guān)系,實(shí)現(xiàn)對(duì)場(chǎng)景的深入理解D.場(chǎng)景理解可以在沒(méi)有任何先驗(yàn)知識(shí)和上下文信息的情況下,準(zhǔn)確地推斷出場(chǎng)景的語(yǔ)義2、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度和時(shí)間不同的同一物體的圖像進(jìn)行精確對(duì)齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準(zhǔn)方法可能更適合處理這種情況?()A.基于特征點(diǎn)匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進(jìn)行任何配準(zhǔn)操作C.基于圖像灰度值的配準(zhǔn)方法,計(jì)算灰度差異D.隨機(jī)選擇圖像中的點(diǎn)進(jìn)行匹配3、計(jì)算機(jī)視覺(jué)中的視覺(jué)注意力機(jī)制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺(jué)注意力機(jī)制的說(shuō)法,不正確的是()A.視覺(jué)注意力機(jī)制可以根據(jù)圖像的特征和任務(wù)需求動(dòng)態(tài)地選擇關(guān)注的區(qū)域B.注意力機(jī)制能夠提高模型的效率和性能,減少對(duì)無(wú)關(guān)信息的處理C.視覺(jué)注意力機(jī)制在圖像分類(lèi)、目標(biāo)檢測(cè)和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺(jué)注意力機(jī)制的引入會(huì)增加模型的復(fù)雜度和計(jì)算量,降低模型的訓(xùn)練速度4、計(jì)算機(jī)視覺(jué)中的醫(yī)學(xué)圖像分析具有重要的臨床應(yīng)用價(jià)值。假設(shè)要從一組X光片中檢測(cè)出病變區(qū)域,同時(shí)要區(qū)分不同類(lèi)型的病變。以下哪種技術(shù)和方法在醫(yī)學(xué)圖像分析中最為常用和有效?()A.形態(tài)學(xué)操作B.圖像分割與分類(lèi)C.特征提取與選擇D.以上方法綜合運(yùn)用5、計(jì)算機(jī)視覺(jué)中的車(chē)牌識(shí)別是智能交通系統(tǒng)中的重要組成部分。假設(shè)要在一個(gè)高速公路收費(fèi)站實(shí)現(xiàn)準(zhǔn)確的車(chē)牌識(shí)別,以下關(guān)于車(chē)牌識(shí)別方法的描述,正確的是:()A.基于邊緣檢測(cè)和字符分割的方法對(duì)車(chē)牌的變形和污漬具有很強(qiáng)的適應(yīng)性B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠直接從車(chē)牌圖像中識(shí)別出字符,但對(duì)車(chē)牌的傾斜和光照不均敏感C.車(chē)牌識(shí)別系統(tǒng)只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無(wú)法正常運(yùn)行D.車(chē)牌識(shí)別的準(zhǔn)確率只取決于車(chē)牌圖像的清晰度,與車(chē)牌的顏色和字體無(wú)關(guān)6、在圖像分類(lèi)任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對(duì)一組包含不同動(dòng)物的圖像進(jìn)行分類(lèi),以下關(guān)于圖像分類(lèi)模型的描述,正確的是:()A.模型的層數(shù)越多,分類(lèi)準(zhǔn)確率一定越高B.數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、裁剪等,對(duì)模型的性能提升沒(méi)有幫助C.結(jié)合多種特征提取方法和分類(lèi)器,可以提高圖像分類(lèi)的準(zhǔn)確性和魯棒性D.圖像分類(lèi)模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計(jì)特征7、在計(jì)算機(jī)視覺(jué)中,以下哪種方法常用于圖像的目標(biāo)檢測(cè)中的遮擋處理?()A.上下文信息B.跟蹤歷史C.多視角融合D.以上都是8、在計(jì)算機(jī)視覺(jué)的人臉識(shí)別任務(wù)中,假設(shè)要實(shí)現(xiàn)一個(gè)能夠在不同光照和表情下準(zhǔn)確識(shí)別的系統(tǒng)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最重要的?()A.對(duì)人臉圖像進(jìn)行歸一化處理,統(tǒng)一大小和亮度B.對(duì)圖像進(jìn)行銳化處理,增強(qiáng)面部特征C.給圖像添加藝術(shù)效果,提高美觀度D.隨機(jī)裁剪圖像,增加數(shù)據(jù)多樣性9、當(dāng)進(jìn)行圖像的目標(biāo)計(jì)數(shù)任務(wù)時(shí),假設(shè)要統(tǒng)計(jì)一張圖像中某種物體的數(shù)量,例如統(tǒng)計(jì)羊群中的羊的數(shù)量。以下哪種方法可能更準(zhǔn)確地完成計(jì)數(shù)任務(wù)?()A.基于深度學(xué)習(xí)的目標(biāo)計(jì)數(shù)模型B.手動(dòng)逐個(gè)計(jì)數(shù)C.估計(jì)圖像中物體的平均大小,然后計(jì)算總面積來(lái)推算數(shù)量D.隨機(jī)猜測(cè)物體的數(shù)量10、在計(jì)算機(jī)視覺(jué)的視頻理解任務(wù)中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術(shù),需要對(duì)視頻中的時(shí)空信息進(jìn)行有效建模。以下哪種方法在時(shí)空建模方面可能具有優(yōu)勢(shì)?()A.3D卷積神經(jīng)網(wǎng)絡(luò)B.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)C.注意力機(jī)制D.以上都是11、假設(shè)要構(gòu)建一個(gè)能夠?qū)?shū)畫(huà)作品進(jìn)行真?zhèn)舞b定的計(jì)算機(jī)視覺(jué)系統(tǒng),需要對(duì)作品的筆觸、線條和風(fēng)格等特征進(jìn)行分析。以下哪種技術(shù)在書(shū)畫(huà)鑒定中可能具有應(yīng)用前景?()A.筆跡分析B.風(fēng)格遷移C.圖像風(fēng)格分析D.以上都是12、在計(jì)算機(jī)視覺(jué)中,圖像增強(qiáng)技術(shù)用于改善圖像的質(zhì)量。以下關(guān)于圖像增強(qiáng)的描述,不正確的是()A.圖像增強(qiáng)可以包括對(duì)比度增強(qiáng)、銳化、去噪等操作B.圖像增強(qiáng)的目的是使圖像更適合人類(lèi)視覺(jué)觀察或后續(xù)的處理任務(wù)C.過(guò)度的圖像增強(qiáng)可能會(huì)導(dǎo)致圖像失真或引入噪聲D.圖像增強(qiáng)只對(duì)低質(zhì)量的圖像有效果,對(duì)于高質(zhì)量的圖像沒(méi)有必要進(jìn)行增強(qiáng)13、在計(jì)算機(jī)視覺(jué)中,視頻摘要生成是從長(zhǎng)視頻中提取關(guān)鍵內(nèi)容并生成簡(jiǎn)潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語(yǔ)義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲(chǔ)等方面具有實(shí)用價(jià)值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒(méi)有任何信息丟失14、在一個(gè)基于計(jì)算機(jī)視覺(jué)的農(nóng)業(yè)監(jiān)測(cè)系統(tǒng)中,需要對(duì)農(nóng)作物的生長(zhǎng)狀況進(jìn)行評(píng)估,例如判斷葉片的顏色、形狀和病蟲(chóng)害情況。以下哪種圖像分析方法可能對(duì)農(nóng)作物監(jiān)測(cè)較為有效?()A.顏色空間轉(zhuǎn)換B.形態(tài)學(xué)分析C.紋理分析D.以上都是15、在計(jì)算機(jī)視覺(jué)中,人臉檢測(cè)和識(shí)別是重要的應(yīng)用方向。以下關(guān)于人臉檢測(cè)和識(shí)別的說(shuō)法,不正確的是()A.人臉檢測(cè)旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識(shí)別是在檢測(cè)到人臉的基礎(chǔ)上,對(duì)人臉的身份進(jìn)行識(shí)別和驗(yàn)證C.深度學(xué)習(xí)方法在人臉檢測(cè)和識(shí)別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測(cè)和識(shí)別技術(shù)已經(jīng)非常成熟,不存在任何錯(cuò)誤率和安全隱患16、計(jì)算機(jī)視覺(jué)中的虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)應(yīng)用需要實(shí)時(shí)生成逼真的視覺(jué)效果。假設(shè)要在一個(gè)VR游戲中為玩家提供沉浸式的視覺(jué)體驗(yàn),或者在AR應(yīng)用中準(zhǔn)確地將虛擬物體與現(xiàn)實(shí)場(chǎng)景融合。以下哪種計(jì)算機(jī)視覺(jué)技術(shù)在實(shí)現(xiàn)這些效果時(shí)至關(guān)重要?()A.實(shí)時(shí)渲染技術(shù)B.空間定位與追蹤技術(shù)C.三維重建與建模技術(shù)D.以上技術(shù)綜合應(yīng)用17、在計(jì)算機(jī)視覺(jué)的圖像特征提取中,假設(shè)要提取對(duì)光照、旋轉(zhuǎn)和縮放具有不變性的特征。以下關(guān)于特征提取方法的描述,正確的是:()A.SIFT特征具有良好的不變性,但計(jì)算復(fù)雜度高,實(shí)時(shí)性差B.HOG特征對(duì)光照變化適應(yīng)性強(qiáng),但對(duì)旋轉(zhuǎn)和縮放較敏感C.LBP特征能夠快速提取,但特征表達(dá)能力有限D(zhuǎn).沒(méi)有一種特征提取方法能夠同時(shí)滿足對(duì)光照、旋轉(zhuǎn)和縮放的不變性要求18、計(jì)算機(jī)視覺(jué)中的姿態(tài)估計(jì)任務(wù)是估計(jì)人體或物體在三維空間中的姿態(tài)。假設(shè)要估計(jì)一個(gè)人體模特的姿態(tài)。以下關(guān)于姿態(tài)估計(jì)的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)關(guān)鍵點(diǎn)檢測(cè)和關(guān)節(jié)角度計(jì)算來(lái)估計(jì)人體姿態(tài)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)可以直接預(yù)測(cè)人體姿態(tài)的參數(shù)C.姿態(tài)估計(jì)在虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用中具有重要作用D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受人體遮擋和復(fù)雜動(dòng)作的影響19、在計(jì)算機(jī)視覺(jué)的實(shí)際應(yīng)用中,光照變化會(huì)對(duì)圖像的處理和分析產(chǎn)生影響。以下關(guān)于光照變化的描述,不正確的是()A.光照變化可能導(dǎo)致圖像的亮度、對(duì)比度和顏色發(fā)生改變,增加了圖像處理的難度B.一些預(yù)處理技術(shù),如直方圖均衡化,可以在一定程度上減輕光照變化的影響C.深度學(xué)習(xí)模型能夠自動(dòng)適應(yīng)各種光照變化,無(wú)需進(jìn)行額外的處理D.光照變化對(duì)于目標(biāo)檢測(cè)和跟蹤等任務(wù)的準(zhǔn)確性可能會(huì)產(chǎn)生較大的影響20、在計(jì)算機(jī)視覺(jué)的醫(yī)學(xué)圖像分析任務(wù)中,假設(shè)要檢測(cè)醫(yī)學(xué)圖像中的腫瘤區(qū)域。以下哪種方法可能更適合處理醫(yī)學(xué)圖像的特殊性?()A.結(jié)合先驗(yàn)醫(yī)學(xué)知識(shí)和圖像特征B.使用通用的圖像檢測(cè)算法,不考慮醫(yī)學(xué)背景C.只對(duì)圖像的部分區(qū)域進(jìn)行分析,忽略其他部分D.隨機(jī)標(biāo)記圖像中的區(qū)域?yàn)槟[瘤區(qū)域21、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有重要應(yīng)用。假設(shè)要通過(guò)攝像頭監(jiān)控一個(gè)公共場(chǎng)所,以下關(guān)于計(jì)算機(jī)視覺(jué)在安防監(jiān)控中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)檢測(cè)異常行為,如人群聚集、奔跑等B.能夠?qū)θ藛T進(jìn)行身份識(shí)別和認(rèn)證C.計(jì)算機(jī)視覺(jué)系統(tǒng)可以獨(dú)立完成所有的安防監(jiān)控任務(wù),不需要人工干預(yù)D.與其他安防設(shè)備和系統(tǒng)集成,提高整體的安全性和防范能力22、當(dāng)利用計(jì)算機(jī)視覺(jué)進(jìn)行視頻監(jiān)控中的異常行為檢測(cè),例如打架、盜竊等,以下哪種方法可能有助于準(zhǔn)確識(shí)別異常行為?()A.建立正常行為模型B.運(yùn)動(dòng)軌跡分析C.人群密度估計(jì)D.以上都是23、計(jì)算機(jī)視覺(jué)在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況。假設(shè)要通過(guò)圖像分析判斷農(nóng)作物的病蟲(chóng)害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺(jué)應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲(chóng)害的程度B.不同農(nóng)作物品種和生長(zhǎng)階段對(duì)病蟲(chóng)害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評(píng)估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對(duì)計(jì)算機(jī)視覺(jué)的應(yīng)用沒(méi)有挑戰(zhàn)24、在計(jì)算機(jī)視覺(jué)的圖像檢索任務(wù)中,根據(jù)用戶提供的圖像或特征在數(shù)據(jù)庫(kù)中查找相似的圖像。假設(shè)要從一個(gè)大型圖像庫(kù)中找到與給定圖像相似的圖片,以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于圖像的顏色和紋理特征進(jìn)行檢索能夠滿足所有的檢索需求B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)提取的特征在圖像檢索中不如手工設(shè)計(jì)的特征有效C.考慮圖像的語(yǔ)義信息和高層特征可以提高圖像檢索的準(zhǔn)確性和相關(guān)性D.圖像檢索的速度和效率不受數(shù)據(jù)庫(kù)大小和特征維度的影響25、在計(jì)算機(jī)視覺(jué)的圖像增強(qiáng)處理中,目的是改善圖像的質(zhì)量和可讀性。假設(shè)我們要對(duì)一張低光照條件下拍攝的圖像進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是不正確的?()A.直方圖均衡化可以通過(guò)調(diào)整圖像的灰度分布,增強(qiáng)圖像的對(duì)比度B.基于Retinex理論的方法可以分離圖像的光照和反射成分,從而改善圖像的視覺(jué)效果C.圖像增強(qiáng)算法可以在不增加噪聲的情況下,顯著提高圖像的亮度和清晰度D.不同的圖像增強(qiáng)方法適用于不同類(lèi)型的圖像,需要根據(jù)具體情況選擇合適的方法二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)解釋計(jì)算機(jī)視覺(jué)在環(huán)境保護(hù)中的用途。2、(本題5分)計(jì)算機(jī)視覺(jué)中如何進(jìn)行攝像機(jī)標(biāo)定?3、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在智能穿戴設(shè)備中的應(yīng)用。4、(本題5分)解釋計(jì)算機(jī)視覺(jué)在數(shù)字出版中的作用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究某主題公園的地圖設(shè)計(jì),思考如何通過(guò)清晰的布局、有趣的圖標(biāo)和色彩搭配為游客提供便捷的導(dǎo)航和愉悅的游玩體驗(yàn)。2、(本題5分)觀察某農(nóng)產(chǎn)品品牌的包裝設(shè)計(jì),思考如何運(yùn)用自然元素和簡(jiǎn)潔的設(shè)計(jì)突出產(chǎn)品的新鮮和綠色環(huán)保特點(diǎn)。3、(本題5分)研究某餐廳的菜單設(shè)計(jì),分析其如何通過(guò)菜品圖片、文字描述和排版設(shè)計(jì),展示餐廳的特色菜肴,提高顧客的點(diǎn)餐體驗(yàn)。4、(本題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年生態(tài)園林木制景觀工程設(shè)計(jì)施工合同3篇
- 2024年度單位二手房買(mǎi)賣(mài)合同范本解析3篇
- 2024年民爆物品研發(fā)成果轉(zhuǎn)化與購(gòu)銷(xiāo)合同3篇
- 大班體育游戲教案及反思
- 2024-2027年中國(guó)中間件軟件行業(yè)市場(chǎng)調(diào)查研究及發(fā)展戰(zhàn)略研究報(bào)告
- 2025年中國(guó)公共圖書(shū)館數(shù)字化行業(yè)市場(chǎng)深度評(píng)估及投資策略咨詢報(bào)告
- 2025年中國(guó)少兒編程行業(yè)市場(chǎng)全景評(píng)估及發(fā)展戰(zhàn)略規(guī)劃報(bào)告
- 2024年粘合劑項(xiàng)目提案報(bào)告模板
- 江蘇飛泰電子有限公司介紹企業(yè)發(fā)展分析報(bào)告模板
- 智慧市可行性研究報(bào)告
- 云計(jì)算應(yīng)用-云服務(wù)平臺(tái)部署計(jì)劃
- 《國(guó)有企業(yè)采購(gòu)操作規(guī)范》【2023修訂版】
- 保密與信息安全培訓(xùn)
- 砂石料供應(yīng)、運(yùn)輸、售后服務(wù)方案-1
- 2022-2023學(xué)年江蘇省徐州市銅山區(qū)四校聯(lián)考五年級(jí)(上)期末科學(xué)試卷(人教版)
- 個(gè)體工商戶公司章程范本:免修版模板范本
- 2023四川測(cè)繪地理信息局直屬事業(yè)單位招考筆試參考題庫(kù)(共500題)答案詳解版
- 山東師范大學(xué)《古代文學(xué)專(zhuān)題(一)》期末復(fù)習(xí)題
- 【《“雙減”背景下小學(xué)數(shù)學(xué)創(chuàng)新作業(yè)設(shè)計(jì)問(wèn)題研究》(論文)】
- 健康養(yǎng)生管理系統(tǒng)
- 口風(fēng)琴在小學(xué)音樂(lè)課堂中的運(yùn)用與實(shí)踐 論文
評(píng)論
0/150
提交評(píng)論