版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江省桐鄉(xiāng)市鳳鳴高級中學2025屆高三最后一卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(shù)(,)是上的奇函數(shù),若的圖象關于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.2.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.3.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.4.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)5.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件6.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.47.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.8.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.9.已知非零向量,滿足,,則與的夾角為()A. B. C. D.10.新聞出版業(yè)不斷推進供給側結構性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一11.已知全集,函數(shù)的定義域為,集合,則下列結論正確的是A. B.C. D.12.復數(shù)的共軛復數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,,,若,則的取值范圍是_______.14.設,則除以的余數(shù)是______.15.執(zhí)行右邊的程序框圖,輸出的的值為.16.已知函數(shù)f(x)=axlnx﹣bx(a,b∈R)在點(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.18.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)?。▓A上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.19.(12分)中國古建筑中的窗飾是藝術和技術的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構成,整個窗芯關于長方形邊框的兩條對稱軸成軸對稱.設菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?20.(12分)設函數(shù),其中.(Ⅰ)當為偶函數(shù)時,求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.21.(12分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.22.(10分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.2、B【解析】
分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).3、B【解析】
根據(jù)函數(shù)的奇偶性及題設中關于與關系,轉(zhuǎn)換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應用,屬于基礎題.4、C【解析】
求函數(shù)導數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數(shù)導數(shù)研究函數(shù)的單調(diào)性,進而研究函數(shù)的最值,屬于常考題型.5、C【解析】
先根據(jù)直線與直線平行確定的值,進而即可確定結果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎題型.6、C【解析】
設直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.7、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.8、C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質(zhì)的應用,其中解答中熟記雙曲線的幾何性質(zhì),準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、B【解析】
由平面向量垂直的數(shù)量積關系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數(shù)量積的運算,平面向量夾角的求法,屬于基礎題.10、C【解析】
通過圖表所給數(shù)據(jù),逐個選項驗證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.11、A【解析】
求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點集,都由代表元決定.12、D【解析】
直接相乘,得,由共軛復數(shù)的性質(zhì)即可得結果【詳解】∵∴其共軛復數(shù)為.故選:D【點睛】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設,又由,可知,從而可得,而點在橢圓上,所以將點的坐標代入橢圓方程中化簡可得結果.【詳解】設,,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點睛】此題考查的是利用橢圓中相關兩個點的關系求離心率,綜合性強,屬于難題.14、1【解析】
利用二項式定理得到,將89寫成1+88,然后再利用二項式定理展開即可.【詳解】,因展開式中后面10項均有88這個因式,所以除以的余數(shù)為1.故答案為:1【點睛】本題考查二項式定理的綜合應用,涉及余數(shù)的問題,解決此類問題的關鍵是靈活構造二項式,并將它展開分析,本題是一道基礎題.15、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結束所以答案應填:考點:1、程序框圖;2、定積分.16、0【解析】
由題意,列方程組可求,即求.【詳解】∵在點處的切線方程為,,代入得①.又②.聯(lián)立①②解得:..故答案為:0.【點睛】本題考查導數(shù)的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】
(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.18、,;當時,棧道總長度最短.【解析】
連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據(jù)求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優(yōu)弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調(diào)遞減極小值單調(diào)遞增故時,所以當時,棧道總長度最短.【點睛】本題主要考查導數(shù)在函數(shù)當中的應用,屬于中檔題.19、(1)(2)【解析】試題分析:(1)由條件可先求水平方向每根支條長,豎直方向每根支條長為,因此所需木料的長度之和L=(2)先確定范圍由可得,再由面積為130cm2,得,轉(zhuǎn)化為一元函數(shù),令,則在上為增函數(shù),解得L有最小值.試題解析:(1)由題意,水平方向每根支條長為cm,豎直方向每根支條長為cm,菱形的邊長為cm.從而,所需木料的長度之和L=cm.(2)由題意,,即,又由可得.所以.令,其導函數(shù)在上恒成立,故在上單調(diào)遞減,所以可得.則=.因為函數(shù)和在上均為增函數(shù),所以在上為增函數(shù),故當,即時L有最小值.答:做這樣一個窗芯至少需要cm長的條形木料.考點:函數(shù)應用題20、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導數(shù),根據(jù)導函數(shù)零點列表分析導函數(shù)符號變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以.此時,則.由,解得.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.對函數(shù)求導,得.由,解得,.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.又因為,,,,所以當或時,直線與曲線,有且只有兩個公共點.即當或時,函數(shù)在區(qū)間上有兩個零點.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構建不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度煤炭儲備基地場地租賃及安全管理合同3篇
- 2024年版保險代理合同
- 2025年度數(shù)據(jù)中心機房設備租賃合同范本3篇
- 2024-2025學年度下學期幼兒園工作計劃1
- 2024無錫江陰專利許可使用合同
- 2024年跨區(qū)域電子商務平臺運營協(xié)議
- 2024年跨境電商平臺入駐經(jīng)紀代理服務協(xié)議3篇
- 2024年貨物買賣合同(進口)
- 第九章《簡單機械 功》單元測試含解析2024-2025學年魯科版(五四學制)物理八年級下冊
- 老年健康知識培訓課件
- 機器人機構學基礎 部分習題及答案(于靖軍 )
- 中建橋面系及橋梁附屬專項施工方案
- 永威置業(yè)項目交付前風險排查表
- 《儲能材料與器件》課程教學大綱(新能源材料與器件專業(yè))
- 2024年海南省公務員考試《行測》真題及答案解析
- 家具維修和保養(yǎng)協(xié)議書
- 吸氧術課件教學課件
- 八年級數(shù)學家長會課件
- 艦艇損害管制與艦艇損害管制訓練
- 光伏發(fā)電項目試驗檢測計劃
- 床上用品材料采購合同
評論
0/150
提交評論