吉林省盟校東風(fēng)二中、靖宇中學(xué)2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第1頁(yè)
吉林省盟校東風(fēng)二中、靖宇中學(xué)2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第2頁(yè)
吉林省盟校東風(fēng)二中、靖宇中學(xué)2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第3頁(yè)
吉林省盟校東風(fēng)二中、靖宇中學(xué)2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第4頁(yè)
吉林省盟校東風(fēng)二中、靖宇中學(xué)2025屆高考數(shù)學(xué)全真模擬密押卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省盟校(東風(fēng)二中、靖宇中學(xué)2025屆高考數(shù)學(xué)全真模擬密押卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù)滿足,則對(duì)應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知且,函數(shù),若,則()A.2 B. C. D.3.已知函數(shù)的最大值為,若存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則的最小值為()A. B. C. D.4.一個(gè)封閉的棱長(zhǎng)為2的正方體容器,當(dāng)水平放置時(shí),如圖,水面的高度正好為棱長(zhǎng)的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.5.在聲學(xué)中,聲強(qiáng)級(jí)(單位:)由公式給出,其中為聲強(qiáng)(單位:).,,那么()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.7.已知雙曲線的一條漸近線為,圓與相切于點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.8.如圖,在棱長(zhǎng)為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點(diǎn),M為棱AD的中點(diǎn),設(shè)P,Q為底面ABCD內(nèi)的兩個(gè)動(dòng)點(diǎn),滿足平面EFG,,則的最小值為()A. B. C. D.9.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)10.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.11.由曲線圍成的封閉圖形的面積為()A. B. C. D.12.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量、的夾角為,且,則的最大值是_____.14.變量滿足約束條件,則目標(biāo)函數(shù)的最大值是____.15.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為_(kāi)_____.16.若滿足,則目標(biāo)函數(shù)的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,.求C;若,求,的面積18.(12分)已知數(shù)列中,,前項(xiàng)和為,若對(duì)任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問(wèn):是否存在數(shù)列,使得對(duì)任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請(qǐng)說(shuō)明理由.19.(12分)如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過(guò)且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),(1)求橢圓的方程.(2)當(dāng)時(shí),求的面積.20.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),,證明:.21.(12分)已知橢圓:(),四點(diǎn),,,中恰有三點(diǎn)在橢圓上.(1)求橢圓的方程;(2)設(shè)橢圓的左右頂點(diǎn)分別為.是橢圓上異于的動(dòng)點(diǎn),求的正切的最大值.22.(10分)在直角坐標(biāo)系x0y中,把曲線α為參數(shù))上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍,縱坐標(biāo)不變,得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程(1)寫(xiě)出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點(diǎn)M在上,點(diǎn)N在上,求|MN|的最小值以及此時(shí)M的直角坐標(biāo).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

利用復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法化簡(jiǎn)復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對(duì)應(yīng)的點(diǎn),對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.2、C【解析】

根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.3、B【解析】

根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,即故答案為:B.【點(diǎn)睛】這個(gè)題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.4、B【解析】

根據(jù)已知可知水面的最大高度為正方體面對(duì)角線長(zhǎng)的一半,由此得到結(jié)論.【詳解】正方體的面對(duì)角線長(zhǎng)為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對(duì)角線長(zhǎng)的一半,即最大水面高度為,故選B.【點(diǎn)睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.5、D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴,故選:D.【點(diǎn)睛】本小題主要考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.6、B【解析】

列出循環(huán)的每一步,進(jìn)而可求得輸出的值.【詳解】根據(jù)程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時(shí):,,所以:不成立.繼續(xù)進(jìn)行循環(huán),…,當(dāng),時(shí),成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):程序框圖的循環(huán)結(jié)構(gòu)和條件結(jié)構(gòu)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.7、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.8、C【解析】

把截面畫(huà)完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對(duì)稱性可得的最小值.【詳解】如圖,分別取的中點(diǎn),連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對(duì)稱點(diǎn)為,,當(dāng)且僅當(dāng)共線時(shí)取等號(hào),∴所求最小值為.故選:C.【點(diǎn)睛】本題考查空間距離的最小值問(wèn)題,解題時(shí)作出正方體的完整截面求出點(diǎn)軌跡是第一個(gè)難點(diǎn),第二個(gè)難點(diǎn)是求出點(diǎn)軌跡,第三個(gè)難點(diǎn)是利用對(duì)稱性及圓的性質(zhì)求得最小值.9、C【解析】

根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.10、A【解析】

將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.11、A【解析】

先計(jì)算出兩個(gè)圖像的交點(diǎn)分別為,再利用定積分算兩個(gè)圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點(diǎn)睛】本題考察定積分的應(yīng)用,屬于基礎(chǔ)題.解題時(shí)注意積分區(qū)間和被積函數(shù)的選取.12、C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

建立平面直角坐標(biāo)系,設(shè),可得,進(jìn)而可得出,,由此將轉(zhuǎn)化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結(jié)果.【詳解】根據(jù)題意建立平面直角坐標(biāo)系如圖所示,設(shè),,以、為鄰邊作平行四邊形,則,設(shè),則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當(dāng)時(shí),取最大值.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積最值的計(jì)算,將問(wèn)題轉(zhuǎn)化為角的三角函數(shù)的最值問(wèn)題是解答的關(guān)鍵,考查計(jì)算能力,屬于難題.14、5【解析】

分析:畫(huà)出可行域,平移直線,當(dāng)直線經(jīng)過(guò)時(shí),可得有最大值.詳解:畫(huà)出束條件表示的可行性,如圖,由可得,可得,目標(biāo)函數(shù)變形為,平移直線,當(dāng)直線經(jīng)過(guò)時(shí),可得有最大值,故答案為.點(diǎn)睛:本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的定點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.15、【解析】

求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點(diǎn)睛】本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.16、-1【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過(guò)點(diǎn)時(shí),直線在軸上的截距最大,由得即,則有最大值,故答案為.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).(2).【解析】

由已知利用正弦定理,同角三角函數(shù)基本關(guān)系式可求,結(jié)合范圍,可求,由已知利用二倍角的余弦函數(shù)公式可得,結(jié)合范圍,可求A,根據(jù)三角形的內(nèi)角和定理即可解得C的值.由及正弦定理可得b的值,根據(jù)兩角和的正弦函數(shù)公式可求sinC的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【點(diǎn)睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,二倍角的余弦函數(shù)公式,三角形的內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式等知識(shí)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.18、(1)(2)存在,【解析】

由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項(xiàng)公式即可求出,進(jìn)而求出;由題意得,,,兩式相減得,,據(jù)此可得,當(dāng)時(shí),,進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時(shí),且為整數(shù)即可求出符合題意的的所有值.【詳解】因?yàn)閿?shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,因?yàn)?,所?(2)由題意得,故,兩式相減得所以,當(dāng)時(shí),又因?yàn)樗援?dāng)時(shí),所以成立,所以當(dāng)時(shí),數(shù)列是常數(shù)列,所以因?yàn)楫?dāng)時(shí),成立,所以,所以在中令,因?yàn)?,所以可得,所以,由時(shí),且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點(diǎn)睛】本題考查數(shù)列的新定義、等比數(shù)列的通項(xiàng)公式和數(shù)列遞推公式的運(yùn)用;考查運(yùn)算求解能力、邏輯推理能力和對(duì)新定義的理解能力;通過(guò)反復(fù)利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.19、(1)(2)【解析】

(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因?yàn)橹本€過(guò)點(diǎn),且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因?yàn)?,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為.(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,則點(diǎn)到右準(zhǔn)線的距離為,所以,即,把代入橢圓方程得,,因?yàn)橹本€的斜率,所以,因?yàn)橹本€經(jīng)過(guò)和,所以直線的方程為,聯(lián)立方程組得,解得或,所以,所以的面積.【點(diǎn)睛】本題主要考查直線和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理計(jì)算能力.20、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】

(1)求得的導(dǎo)函數(shù),對(duì)分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達(dá)定理求得的關(guān)系式,利用差比較法,計(jì)算,通過(guò)構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,由此證得,進(jìn)而證得不等式成立.【詳解】(1).當(dāng)時(shí),,此時(shí)在上單調(diào)遞減;當(dāng)時(shí),由解得或,∵是增函數(shù),∴此時(shí)在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論