




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第05講利用導(dǎo)數(shù)研究不等式能成立(有解)問題(精講+精練)目錄第一部分:知識點精準(zhǔn)記憶第二部分:課前自我評估測試第三部分:典型例題剖析高頻考點一:分離變量法高頻考點二:分類討論法高頻考點三:等價轉(zhuǎn)化法高頻考點四:最值定位法解決雙參不等式問題高頻考點五:值域法解決雙參等式問題第四部分:高考真題感悟第五部分:第05講利用導(dǎo)數(shù)研究不等式能成立(有解)問題(精練)第一部分:知識點精準(zhǔn)記憶第一部分:知識點精準(zhǔn)記憶1、分離參數(shù)法用分離參數(shù)法解含參不等式恒成立問題,可以根據(jù)不等式的性質(zhì)將參數(shù)分離出來,得到一個一端是參數(shù),另一端是變量表達(dá)式的不等式;步驟:①分類參數(shù)(注意分類參數(shù)時自變量SKIPIF1<0的取值范圍是否影響不等式的方向)②轉(zhuǎn)化:SKIPIF1<0,使得SKIPIF1<0能成立SKIPIF1<0SKIPIF1<0;SKIPIF1<0,使得SKIPIF1<0能成立SKIPIF1<0SKIPIF1<0.③求最值.2、分類討論法如果無法分離參數(shù),可以考慮對參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數(shù)與判別式的方法(SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0)求解.3、等價轉(zhuǎn)化法當(dāng)遇到SKIPIF1<0型的不等式有解(能成立)問題時,一般采用作差法,構(gòu)造“左減右”的函數(shù)SKIPIF1<0或者“右減左”的函數(shù)SKIPIF1<0,進(jìn)而只需滿足SKIPIF1<0,或者SKIPIF1<0,將比較法的思想融入函數(shù)中,轉(zhuǎn)化為求解函數(shù)的最值的問題.4、最值定位法解決雙參不等式問題(1)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(3)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<0(4)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立SKIPIF1<0SKIPIF1<05、值域法解決雙參等式問題SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立①SKIPIF1<0,求出SKIPIF1<0的值域,記為SKIPIF1<0②SKIPIF1<0求出SKIPIF1<0的值域,記為SKIPIF1<0③則SKIPIF1<0,求出參數(shù)取值范圍.第二部分:課前自我評估測試第二部分:課前自我評估測試1.(2022·全國·高二)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若至少存在一個SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高二)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上有解,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·全國·高二課時練習(xí))已知函數(shù)SKIPIF1<0,若在定義域內(nèi)存在SKIPIF1<0,使得不等式SKIPIF1<0成立,則實數(shù)m的最小值是(
)A.2 B.SKIPIF1<0 C.1 D.SKIPIF1<04.(2021·廣東·高三專題練習(xí))已知函數(shù)SKIPIF1<0,實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的最大值為A.4 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0第三部分:典型例題剖析第三部分:典型例題剖析高頻考點一:分離變量法1.(2022·福建省廈門集美中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在單調(diào)增區(qū)間,則m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·河南焦作·二模(文))已知SKIPIF1<0使得不等式SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·四川·雅安中學(xué)高二階段練習(xí)(文))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的極小值.(2)存在SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.4.(2022·重慶市萬州第二高級中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的極值;(2)若存在SKIPIF1<0,使不等式SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.5.(2022·江蘇省天一中學(xué)高二期末)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間與極值;(2)若SKIPIF1<0在SKIPIF1<0上有解,求實數(shù)a的取值范圍.6.(2022·重慶市第七中學(xué)校高二階段練習(xí))己知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間.(2)存在SKIPIF1<0,使得SKIPIF1<0成立,求整數(shù)SKIPIF1<0的最小值.高頻考點二:分類討論法1.(2022·安徽·安慶一中高三期末(理))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若存在SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)a的取值范圍.2.(2022·安徽馬鞍山·一模(文))已知函數(shù)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)).(1)若SKIPIF1<0時,求SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0,若對任意SKIPIF1<0,均存在SKIPIF1<0,使得SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.3.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0為自然對數(shù)的底數(shù).(1)判斷函數(shù)SKIPIF1<0的單調(diào)性;(2)若不等式SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,求SKIPIF1<0的取值范圍.4.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)若函數(shù)在SKIPIF1<0時取極值,求SKIPIF1<0的單調(diào)區(qū)間;(2)若當(dāng)SKIPIF1<0時SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.5.(2022·福建福州·高二期末)已知函數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0時,求曲線SKIPIF1<0在點(0,f(0))處的切線方程;(2)若存在SKIPIF1<0,使得不等式SKIPIF1<0成立,求m的取值范圍.高頻考點三:等價轉(zhuǎn)化法1.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高三專題練習(xí))當(dāng)SKIPIF1<0時,已知SKIPIF1<0,SKIPIF1<0,若存在唯一的整數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·江蘇南通·高二期末)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍為__________.4.(2022·河北·固安縣第一中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)若SKIPIF1<0,討論函數(shù)SKIPIF1<0的單調(diào)性;(2)設(shè)函數(shù)SKIPIF1<0,若至少存在一個SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.5.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0(1)若函數(shù)SKIPIF1<0與SKIPIF1<0有公共點,求SKIPIF1<0的取值范圍;(2)若不等式SKIPIF1<0恒成立,求整數(shù)SKIPIF1<0的最小值.6.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求函數(shù)SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時,若在SKIPIF1<0上存在一點SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.高頻考點四:最值定位法解決雙參不等式問題1.(2022·浙江·高二階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)a的取值范圍是_________.2.(2022·江蘇省蘇州實驗中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對任意SKIPIF1<0都存在SKIPIF1<0使SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是______3.(2022·全國·高三專題練習(xí))已知兩函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0若對SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,恒有SKIPIF1<0成立,求SKIPIF1<0的取值范圍.4.(2022·上海·高三專題練習(xí))已知兩函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0為實數(shù).(1)對任意SKIPIF1<0,都有SKIPIF1<0成立,求SKIPIF1<0的取值范圍;(2)存在SKIPIF1<0,使SKIPIF1<0成立,求SKIPIF1<0的取值范圍;(3)對任意SKIPIF1<0,都有SKIPIF1<0,求SKIPIF1<0的取值范圍.5.(2022·全國·高二課時練習(xí))已知函數(shù)SKIPIF1<0.(1)求證:在區(qū)間SKIPIF1<0上,函數(shù)SKIPIF1<0的圖象恒在函數(shù)SKIPIF1<0的圖象的下方;(2)若存在SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0成立,求滿足上述條件的最大整數(shù)m.6.(2022·重慶南開中學(xué)高二期末)設(shè)函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性;(2)函數(shù)SKIPIF1<0,若對任意的SKIPIF1<0,總存在SKIPIF1<0使得SKIPIF1<0,求實數(shù)SKIPIF1<0的取值范圍.7.(2022·重慶市長壽中學(xué)校高二階段練習(xí))已知函數(shù)SKIPIF1<0(1)討論SKIPIF1<0的單調(diào)區(qū)間;(2)設(shè)SKIPIF1<0,若對任意的SKIPIF1<0,存在SKIPIF1<0,使SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.高頻考點五:值域法解決雙參等式問題1.(2022·北京·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,若對SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則a的取值范圍是(
)A.[2,5] B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·江蘇淮安·高二期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,則實數(shù)a的取值范圍是______.3.(2022·上海長寧·高一期末)已知函數(shù)SKIPIF1<0;若存在相異的實數(shù)SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是__________.4.(2022·山東·濰坊一中模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若存在SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,求實數(shù)a的取值范圍.5.(2022·全國·高三專題練習(xí)(理))已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x,g(x)=SKIPIF1<0x-SKIPIF1<0,若對任意x1∈[-1,1],總存在x2∈[0,2],使得f′(x1)+2ax1=g(x2)成立,求實數(shù)a的取值范圍.6.(2021·上海市復(fù)興高級中學(xué)高三期中)已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,解不等式SKIPIF1<0;(2)若對任意的SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,求實數(shù)m的取值范圍.7.(2021·吉林吉林·高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的極值;(2)SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0成立,求SKIPIF1<0的取值范圍.8.(2022·重慶市朝陽中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值域為____;若對SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0成立,則c的取值范圍是__________.第四部分:高考真題感悟第四部分:高考真題感悟1.(2021·天津·高考真題)已知SKIPIF1<0,函數(shù)SKIPIF1<0.(I)求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程:(II)證明SKIPIF1<0存在唯一的極值點(III)若存在a,使得SKIPIF1<0對任意SKIPIF1<0成立,求實數(shù)b的取值范圍..第五部分:第05講利用導(dǎo)數(shù)研究不等式能成立(有解)問題(精練)第五部分:第05講利用導(dǎo)數(shù)研究不等式能成立(有解)問題(精練)一、單選題1.(2021·全國·高二單元測試)已知a≥SKIPIF1<0+lnx對任意x∈[SKIPIF1<0,e]恒成立,則a的最小值為()A.1 B.e-2 C. D.02.(2021·陜西·西安市第八十三中學(xué)高二期末(理))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0,若僅有一個整數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·高三開學(xué)考試(理))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0成立,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·江西南昌·高二期末(理))已知SKIPIF1<0,若對于SKIPIF1<0且SKIPIF1<0都有SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國·高三專題練習(xí))已知函數(shù)f(x)=SKIPIF1<0,函數(shù)g(x)=asin(SKIPIF1<0x)﹣2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,則實數(shù)a的取值范圍是(
)A.[﹣SKIPIF1<0,1] B.[SKIPIF1<0,SKIPIF1<0] C.[SKIPIF1<0,SKIPIF1<0] D.[SKIPIF1<0,2]6.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0成立,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2022·內(nèi)蒙古師大附中高二期末(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對于任意的SKIPIF1<0,存在唯一的SKIPIF1<0,使得SKIPIF1<0,則實數(shù)a的取值范圍是(
)A.(e,4) B.(eSKIPIF1<0,4] C.(eSKIPIF1<0,4) D.(SKIPIF1<0,4]8.(2022·安徽安慶·二模(理))若存在兩個正實數(shù)SKIPIF1<0使得等式SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空題9.(2022·全國·高三專題練習(xí)(文))若函數(shù)h(x)=lnx-SKIPIF1<0ax2-2x(a≠0)在[1,4]上存在單調(diào)遞減區(qū)間”,則實數(shù)a的取值范圍為________.10.(2022·全國·高二)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0有解,則實數(shù)SKIPIF1<0的取值范圍是_________________.11.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0成立,則實數(shù)SKIPIF1<0的取值范圍是______.12.(2022·廣西壯族自治區(qū)北流市高級中學(xué)高二階段練習(xí)(理))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,(SKIPIF1<0),若對任意S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 儲物收納批發(fā)考核試卷
- 教學(xué)過程中解決問題的策略計劃
- 體育組織賽事運動員保險與理賠考核試卷
- 儀器制造業(yè)的安全生產(chǎn)與應(yīng)急預(yù)案考核試卷
- 推進(jìn)多渠道營銷的實施方案計劃
- 主管工作計劃的制定與執(zhí)行
- 員工績效考核流程規(guī)定計劃
- 土地填方合同范本
- 現(xiàn)代生態(tài)監(jiān)測與評估技術(shù)的應(yīng)用進(jìn)展
- 個人下半年工作計劃范文2篇
- 山東職業(yè)學(xué)院單招《英語》考試復(fù)習(xí)題庫(含答案)
- 四年級上冊數(shù)學(xué)計算題練習(xí)300題及答案
- 滬教版二年級下冊計算題100道及答案
- 2023新課標(biāo)魯教版九年級化學(xué)下冊全教案
- 《開學(xué)第一課:一年級新生入學(xué)班會》課件
- 右側(cè)腹股溝疝教學(xué)查房
- 《趣味經(jīng)濟(jì)學(xué)》課件
- 人工智能與自動駕駛技術(shù)
- 醫(yī)院放射診療中的輻射防護(hù)常識學(xué)習(xí)培訓(xùn)
- 法學(xué)涉外法治方向課程設(shè)計
評論
0/150
提交評論