版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一元二次不等式恒成立問題一元二次不等式及其解法
恒成立問題
△>0有兩相異實根x1,x2(x1<x2){x|x<x1,或x>x2}{x|x1<x<x2
}△=0△<0有兩相等實根x1=x2={x|x≠
}x1x2xyOyxOΦΦR沒有實根yxOx1三個“二次”的關(guān)系表中的承擔幾種角色1、一元二次方程的兩根。2、二次函數(shù)的零點。3、不等式解的端點。二次不等式的恒成立
例1已知關(guān)于x下列不等式:(a-2)x2+(a-2)x+1試求a的取值范圍.≥0恒成立,≥0的解集為R恒為非負≥0對任意x∈R都成立解:令y=(a-2)x2+(a-2)x+1,①當a=2時,y=1符合題意;②當a>2時,則△≤0,有2<a≤6;△=(a-2)2-4(a-2)=(a-2)(a-6)③當a<2時,則a的值不存在;綜上,所求a的取值范圍為{a|2≤a≤6}.練一練若不等式(m-2)x2+2(m-2)x-4<0對于x∈R恒成立,則實數(shù)m的取值范圍時
.練一練變式1:若函數(shù)的定義域為R,則m的取值范圍是__________。求實數(shù)a的取值范圍。例2:若關(guān)于x的一元二次不等式的解集為R,則m的取值范圍。__m〈2________通過對上述問題的探究,我們可得到以下結(jié)論:達標檢測A1.若關(guān)于x的不等式(a-2)x2+2(a-2)x-4<0的解為一切實數(shù),則a的取值范圍為 ()A.(-2,2]B.[-2,2]C.(-∞,-2)∪[2,+∞)D.(-∞,-2)∪(2,+∞)(-1,0]則問題轉(zhuǎn)化為m≤g(x)min解:m≤-2x2+9x在區(qū)間[2,3]上恒成立,(1)變量分離法(分離參數(shù))例5.關(guān)于x的不等式在區(qū)間[2,3]上恒成立,則實數(shù)m的取值范圍是_______.不等式恒成立問題【評注】對于一些含參數(shù)的不等式恒成立問題,如果能夠?qū)⒉坏仁街械淖兞亢蛥?shù)進行剝離,即使變量和參數(shù)分別位于不等式的左、右兩邊,然后通過求函數(shù)的值域的方法將問題化歸為解關(guān)于參數(shù)的不等式的問題.問題等價于f(x)max≤0,解:構(gòu)造函數(shù)23y..xo(2)轉(zhuǎn)換求函數(shù)的最值例3.關(guān)于x的不等式在區(qū)間[2,3]上恒成立,則實數(shù)m的取值范圍是_______.不等式恒成立問題則解:構(gòu)造函數(shù)23y..xo例5.關(guān)于x的不等式在區(qū)間[2,3]上恒成立,則實數(shù)m的取值范圍是_______.(3)數(shù)形結(jié)合思想不等式恒成立問題二、例題探究二、例題變形三、知識小結(jié)四、知識拓展基礎(chǔ)知識點復(fù)習五、代表例題【1】若不等式(m-2)x2+2(m-2)x-4<0對于m∈[-1,1]恒成立,則實數(shù)x的取值范圍是_______.練一練此題若把它看成關(guān)于x的二次函數(shù),由于a,x都要變,則函數(shù)的最小值很難求出,思路受阻.若視a為主元,則給解題帶來轉(zhuǎn)機.練一練(三)逆向問題題型與解法例2.已知不等式的解集為求a-b的值.解法一:∵不等式的解集為∴方程的兩根為(三)逆向問題題型與解法例2.已知不等式的解集為求a-b的值.解法二:∵不等式的解集為∴方程的兩根為由韋達定理得(三)逆向問題題型與解法例2.已知不等式的解集為求a-b的值.(三)逆向問題題型與解法例2.已知不等式的解集為求a-b的值.解法三:∵不等式的解集為由待定系數(shù)法得(三)逆向問題題型與解法變式訓練21.下列不等式中,解集為實數(shù)集R的是()(B)(A)(C)(D)2.當?shù)慕馐牵ǎ?A)(B)(C)(D)DC課堂練習3.(1)不等式ax2+bx+2>0的解集是{x|-1/2<x<1/3},則a+b=
.
(2)關(guān)于x不等式ax2+bx+c>0的解集是{x|x<-2或x>1/2},則關(guān)于x的不等式ax2-bx+c<0的解集為
.⑶對于任意實數(shù)x,ax2+4x-1≥-2x2-a,對于任意實數(shù)恒成立,則實數(shù)a的取值范圍為
.4.當m為何值時,方程x2-2mx+2m+3=0
(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋權(quán)屬轉(zhuǎn)移合同(2篇)
- 2024年度市政綠化工程土石方施工補充合同6篇
- 2024年教育軟件銷售與授權(quán)合同3篇
- 《修煉執(zhí)行智慧》課件
- 2025年文山道路客貨運輸從業(yè)資格證b2考試題庫
- 2025年資陽貨運考試題庫
- 2024年度個體戶用工勞動合同參考(汽車行業(yè))
- 2024年土地承包經(jīng)營權(quán)及農(nóng)業(yè)科技研發(fā)合作合同3篇
- 第1次月考B卷(考試版)【測試范圍:第一單元、第二單元】(統(tǒng)編版)A4版
- 國內(nèi)外頂級私人會所解讀課件
- 臨床藥理學第十四章 腎功能不全臨床用藥
- YS/T 682-2008釕粉
- GB/T 5976-2006鋼絲繩夾
- 麗聲妙想英文繪本第一級 My Dad課件
- 部編版五年級語文上-句子專項課件
- 初中語文人教九年級下冊《統(tǒng)一》PPT
- 國家開放大學《開放英語4》期末考試復(fù)習題及參考答案
- 靜脈治療課件
- 社會學理論復(fù)習資料
- 艱苦邊遠地區(qū)范圍和類別表
- 經(jīng)方論治冠心病(一)課件
評論
0/150
提交評論