新高考數(shù)學(xué)一輪復(fù)習(xí)第1章 第04講 一元二次函數(shù)(方程不等式)精講+精練(教師版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第1章 第04講 一元二次函數(shù)(方程不等式)精講+精練(教師版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第1章 第04講 一元二次函數(shù)(方程不等式)精講+精練(教師版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第1章 第04講 一元二次函數(shù)(方程不等式)精講+精練(教師版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第1章 第04講 一元二次函數(shù)(方程不等式)精講+精練(教師版)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第04講一元二次函數(shù)(方程,不等式)(精講+精練)目錄第一部分:思維導(dǎo)圖(總覽全局)第二部分:知識點(diǎn)精準(zhǔn)記憶第三部分:課前自我評估測試第四部分:典型例題剖析高頻考點(diǎn)一:一元二次(分式)不等式解法(不含參)高頻考點(diǎn)二:一元二次不等式解法(含參)高頻考點(diǎn)三:一元二次不等式與相應(yīng)的二次函數(shù)(方程)的關(guān)系高頻考點(diǎn)四:一元二次不等式恒成立問題①SKIPIF1<0上恒成立(優(yōu)選SKIPIF1<0法)②SKIPIF1<0上恒成立(優(yōu)選SKIPIF1<0法)③SKIPIF1<0上恒成立(優(yōu)選分離變量法)④SKIPIF1<0上恒成立(優(yōu)選分離變量法)⑤已知參數(shù)SKIPIF1<0,求SKIPIF1<0取值范圍(優(yōu)選變更主元法)高頻考點(diǎn)五:一元二次不等式的應(yīng)用第五部分:高考真題感悟第六部分:第04講一元二次函數(shù)(方程,不等式)(精練)第一部分:思維導(dǎo)圖總覽全局第一部分:思維導(dǎo)圖總覽全局第二部分:知識點(diǎn)精準(zhǔn)記憶第二部分:知識點(diǎn)精準(zhǔn)記憶1、二次函數(shù)(1)形式:形如SKIPIF1<0的函數(shù)叫做二次函數(shù).(2)特點(diǎn):①函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸交點(diǎn)的橫坐標(biāo)是方程SKIPIF1<0的實(shí)根.②當(dāng)SKIPIF1<0且SKIPIF1<0(SKIPIF1<0)時(shí),恒有SKIPIF1<0(SKIPIF1<0);當(dāng)SKIPIF1<0且SKIPIF1<0(SKIPIF1<0)時(shí),恒有SKIPIF1<0(SKIPIF1<0).2、一元二次不等式只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式,稱為一元二次不等式.3.SKIPIF1<0或SKIPIF1<0型不等式的解集不等式解集SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<04、一元二次不等式與相應(yīng)的二次函數(shù)及一元二次方程的關(guān)系判別式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0二次函數(shù)SKIPIF1<0的圖象一元二次方程SKIPIF1<0的根有兩相異實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0(SKIPIF1<0)有兩相等實(shí)數(shù)根SKIPIF1<0沒有實(shí)數(shù)根一元二次不等式SKIPIF1<0的解集SKIPIF1<0SKIPIF1<0SKIPIF1<0一元二次不等式SKIPIF1<0的解集SKIPIF1<0SKIPIF1<0SKIPIF1<05、分式不等式解法(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<06、單絕對值不等式(1)SKIPIF1<0(2)SKIPIF1<0第三部分:課前自我評估測試第三部分:課前自我評估測試一、判斷題1.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,關(guān)于x的不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0.___________(判斷對錯(cuò))【答案】正確【詳解】由不等式SKIPIF1<0的解集為SKIPIF1<0,∴SKIPIF1<0是二次函數(shù)且開口向上,對稱軸為xSKIPIF1<01,且SKIPIF1<0,∴SKIPIF1<0.故答案為:正確.二、單選題1.(2022·貴州畢節(jié)·高一期末)已知不等式SKIPIF1<0的解集為SKIPIF1<0,則a,b的值是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.6,3 D.3,6【答案】B由題意知得:SKIPIF1<0和SKIPIF1<0是方程SKIPIF1<0的兩個(gè)根可得:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0解得:SKIPIF1<0,SKIPIF1<0故選:B2.(2022·江西南昌·一模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0SKIPIF1<0故選:C3.(2022·陜西西安·高二期末(文))若關(guān)于SKIPIF1<0的一元二次不等式SKIPIF1<0的解集為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B由于關(guān)于SKIPIF1<0的一元二次不等式SKIPIF1<0的解集為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B4.(2022·廣東珠?!じ咭黄谀┮阎P(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集是SKIPIF1<0,則SKIPIF1<0的值是(

)A.SKIPIF1<0 B.2 C.22 D.SKIPIF1<0【答案】C由題意得:2與3是方程SKIPIF1<0的兩個(gè)根,故SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:C5.(2022·寧夏·高三階段練習(xí)(文))已知集合SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ASKIPIF1<0,則SKIPIF1<0SKIPIF1<0.故選:A.第四部分:典型例題剖析第四部分:典型例題剖析高頻考點(diǎn)一:一元二次(分式)不等式解法(不含參)1.(2022·河北·模擬預(yù)測)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解不等式SKIPIF1<0,SKIPIF1<0,解不等式SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;故選:B.2.(2022·湖南·高一課時(shí)練習(xí))下面四個(gè)不等式中解集為空集的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D對于A選項(xiàng),解不等式SKIPIF1<0得SKIPIF1<0,A不滿足條件;對于B選項(xiàng),由SKIPIF1<0得SKIPIF1<0,該不等式的解集為SKIPIF1<0,B不滿足條件;對于C選項(xiàng),由SKIPIF1<0可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,C不滿足條件;對于D選項(xiàng),因?yàn)镾KIPIF1<0,故不等式SKIPIF1<0的解集為空集,D滿足條件.故選:D.3.(2022·河南·信陽高中高一期末(理))設(shè)集合SKIPIF1<0,N=x∈Zx2?12x?5≤0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,故SKIPIF1<0SKIPIF1<0解得:SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0.故選:C4.(2022·河南南陽·高二期末(文))不等式SKIPIF1<0的一個(gè)必要不充分條件是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BSKIPIF1<0,解得SKIPIF1<0,所以不等式SKIPIF1<0的一個(gè)必要不充分條件是SKIPIF1<0.故選:B5.(2022·河南洛陽·高二期末(文))不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ASKIPIF1<0,故選:A.6.(2022·全國·高三專題練習(xí))設(shè)集合SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ASKIPIF1<0又SKIPIF1<0所以SKIPIF1<0故選:A高頻考點(diǎn)二:一元二次不等式解法(含參)一元二次不等式解法(含參問題)談?wù)撊瓌t:①最高項(xiàng)系數(shù)含參,從參數(shù)等于0開始討論;如:SKIPIF1<0,最高項(xiàng)系數(shù)為SKIPIF1<0討論時(shí),從SKIPIF1<0開始討論.②兩根大小不確定,從兩根相等開始討論;如SKIPIF1<0兩根分別為:SKIPIF1<0,SKIPIF1<0,討論時(shí)從SKIPIF1<0開始討論③根是否在定義域內(nèi):如SKIPIF1<0此時(shí)兩根SKIPIF1<0,SKIPIF1<0,討論時(shí)注意SKIPIF1<0(舍去)1.(2022·北京·清華附中高一期末)求下列關(guān)于SKIPIF1<0的不等式的解集:SKIPIF1<0解:當(dāng)SKIPIF1<0時(shí),原不等式即為SKIPIF1<0,該不等式的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,原不等式即為SKIPIF1<0.①若SKIPIF1<0,則SKIPIF1<0,原不等式的解集為SKIPIF1<0或SKIPIF1<0;②若SKIPIF1<0,則SKIPIF1<0,原不等式的解集為SKIPIF1<0或SKIPIF1<0.綜上所述,當(dāng)SKIPIF1<0時(shí),原不等式的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),原不等式的解集為SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),原不等式的解集為SKIPIF1<0或SKIPIF1<0.2.(2022·河北唐山·高一期末)已知關(guān)于x的不等式:SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),解此不等式;(2)當(dāng)SKIPIF1<0時(shí),解此不等式.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0(1)當(dāng)a=-2時(shí),不等式-2x2+5x+3<0整理得(2x+1)(x-3)>0,解得x<-SKIPIF1<0或x>3,當(dāng)a=-2時(shí),原不等式解集為{x|x<-SKIPIF1<0或x>3}.(2)當(dāng)a>0時(shí),不等式ax2-(3a+1)x+3<0整理得:(x-3)(x-SKIPIF1<0)<0,

當(dāng)a=SKIPIF1<0時(shí),SKIPIF1<0=3,此時(shí)不等式無解;

當(dāng)0<a<SKIPIF1<0時(shí),SKIPIF1<0>3,解得3<x<SKIPIF1<0;

當(dāng)a>SKIPIF1<0時(shí),SKIPIF1<0<3,解得SKIPIF1<0<x<3;

綜上:當(dāng)a=SKIPIF1<0時(shí),解集為;當(dāng)0<a<SKIPIF1<0時(shí),解集為{x|3<x<SKIPIF1<0};當(dāng)a>SKIPIF1<0時(shí),解集為{x|SKIPIF1<0<x<3}.3.(2022·福建·莆田第二十五中學(xué)高一期末)解關(guān)于SKIPIF1<0的不等式SKIPIF1<0.由SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),無解;當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0;4.(2022·全國·高三專題練習(xí))解關(guān)于SKIPIF1<0的不等式:SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,∵SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),不等式的解為SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),不等式的解為SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),不等式的解SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)原不等式的解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)原不等式的解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)不等式的解集為SKIPIF1<0.高頻考點(diǎn)三:一元二次不等式與相應(yīng)的二次函數(shù)(方程)的關(guān)系1.(2021·甘肅·甘南藏族自治州合作第一中學(xué)高一期中)若不等式SKIPIF1<0的解集為[-1,2],則SKIPIF1<0=(

)A.-2 B.-1 C.1 D.2【答案】B由題意SKIPIF1<0,SKIPIF1<0的解是SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0.故選:B.2.(2021·四川省南充高級中學(xué)高二開學(xué)考試(理))已知不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0解:由題意不等式SKIPIF1<0的解集是SKIPIF1<0,可知不等式是二次不等式,故1,2是方程SKIPIF1<0的兩個(gè)根,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.故答案為:SKIPIF1<0.3.(2022·天津市紅橋區(qū)教師發(fā)展中心高一期末)若函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn)是2和3,則不等式SKIPIF1<0的解集為________.【答案】SKIPIF1<0根據(jù)題意,SKIPIF1<0,則不等式可化為SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·上海閔行·高一期末)已知SKIPIF1<0、SKIPIF1<0,關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0由題意可知,關(guān)于SKIPIF1<0的方程SKIPIF1<0的兩根分別為SKIPIF1<0、SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,可得SKIPIF1<0,因此,SKIPIF1<0.故答案為:SKIPIF1<0.5.(2022·上海·曹楊二中高一期末)已知a為常數(shù),若關(guān)于x的不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0因關(guān)于x的不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0,2是方程SKIPIF1<0的兩個(gè)根,因此有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0高頻考點(diǎn)四:一元二次不等式恒成立問題①SKIPIF1<0上恒成立二次型+SKIPIF1<0(范圍)優(yōu)選SKIPIF1<0法(注意最高項(xiàng)系數(shù)含參數(shù),從0開始討論)1.(2022·福建寧德·高一期末)SKIPIF1<0不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ASKIPIF1<0不等式SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時(shí),顯然不恒成立,所以SKIPIF1<0,解得:SKIPIF1<0.故選:A.2.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,“SKIPIF1<0對SKIPIF1<0恒成立”的一個(gè)充要條件是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,對SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,對SKIPIF1<0恒成立,則必須有SKIPIF1<0,解之得SKIPIF1<0,綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.故“SKIPIF1<0對SKIPIF1<0恒成立”的一個(gè)充要條件是SKIPIF1<0,故選:B3.(2021·吉林·汪清縣汪清第四中學(xué)高一階段練習(xí))若不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不符合題意,所以舍去;當(dāng)SKIPIF1<0時(shí),由題得SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0.綜上:SKIPIF1<0.故選:C4.(2021·全國·高一課時(shí)練習(xí))若不等式SKIPIF1<0對任意SKIPIF1<0均成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:原不等式等價(jià)于SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0對任意的SKIPIF1<0不等式都成立;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0;③當(dāng)SKIPIF1<0時(shí),顯然不能成立.綜合①②③,得SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A5.(2020·河北省尚義縣第一中學(xué)高一期中)若命題SKIPIF1<0為真命題,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C因?yàn)槊}SKIPIF1<0是真命題,令SKIPIF1<0,則必有SKIPIF1<0,解得:SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故選:C②SKIPIF1<0上恒成立二次型+SKIPIF1<0(范圍)優(yōu)選SKIPIF1<0法(注意最高項(xiàng)系數(shù)含參數(shù),從0開始討論)1.(2022·河南·新蔡縣第一高級中學(xué)高二階段練習(xí)(文))如果“SKIPIF1<0,使SKIPIF1<0.”是真命題,那么實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B“SKIPIF1<0,使SKIPIF1<0.”是真命題,∴SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0.故選:B2.(2020·寧夏·隆德縣中學(xué)高三階段練習(xí)(理))已知命題“SKIPIF1<0,SKIPIF1<0”是真命題,則實(shí)數(shù)SKIPIF1<0的取值范圍(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0)D.SKIPIF1<0SKIPIF1<0【答案】D由題意,命題“SKIPIF1<0,SKIPIF1<0”是真命題故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0SKIPIF1<0故選:D.3.(2022·江蘇南通·高一期末)若命題“SKIPIF1<0”是真命題,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.(﹣∞,1) B.(﹣∞,1] C.(1,+∞) D.[1,+∞)【答案】A若命題“SKIPIF1<0”是真命題,即SKIPIF1<0有解,則對應(yīng)的判別式SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:A4.(2021·山西·朔州市平魯區(qū)李林中學(xué)高一階段練習(xí))若命題“SKIPIF1<0”是真命題,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】DSKIPIF1<0,即函數(shù)SKIPIF1<0的最小值小于0即可,SKIPIF1<0,故SKIPIF1<0,解得:SKIPIF1<0故選:D5.(2021·天津·耀華中學(xué)高一期中)若命題“SKIPIF1<0,使得不等式SKIPIF1<0”成立,則實(shí)數(shù)SKIPIF1<0的取值集合是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B命題“SKIPIF1<0,使得不等式SKIPIF1<0”成立,當(dāng)SKIPIF1<0時(shí),不等式為SKIPIF1<0,顯然有解,成立;當(dāng)SKIPIF1<0時(shí),開口向下,必然SKIPIF1<0,使得不等式SKIPIF1<0成立,;當(dāng)SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.綜上可得SKIPIF1<0或SKIPIF1<0.故選:SKIPIF1<0.③SKIPIF1<0上恒成立(優(yōu)選分離變量法)SKIPIF1<0SKIPIF1<01.(2022·海南·嘉積中學(xué)高一階段練習(xí))對任意的SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號),SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.2.(2021·河北·石家莊市藁城區(qū)第一中學(xué)高三開學(xué)考試)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解:當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時(shí),由題意可得SKIPIF1<0恒成立,由SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取得等號.所以SKIPIF1<0,解得SKIPIF1<0.綜上可得,SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.3.(2021·福建·泉州市第六中學(xué)高一期中)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則有(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A因?yàn)殛P(guān)于SKIPIF1<0的不等式SKIPIF1<0對任意SKIPIF1<0恒成立,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,所以SKIPIF1<0故選:A4.(2021·黑龍江·雞西市第一中學(xué)校高一期中)已知函數(shù)SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解:因?yàn)镾KIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,任取SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,所以SKIPIF1<0,所以SKIPIF1<0.故選:B.5.(2022·全國·高三專題練習(xí))若對任意的SKIPIF1<0恒成立,則m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:因?yàn)閷θ我獾腟KIPIF1<0恒成立,所以對任意的SKIPIF1<0恒成立,因?yàn)楫?dāng)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,即m的取值范圍是SKIPIF1<0故選:A6.(2022·甘肅張掖·高一期末)設(shè)函數(shù)SKIPIF1<0.(1)若不等式SKIPIF1<0的解集是SKIPIF1<0,求不等式SKIPIF1<0的解集;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0或SKIPIF1<0(2)SKIPIF1<0(1)因?yàn)椴坏仁絊KIPIF1<0的解集是SKIPIF1<0,所以SKIPIF1<0是方程SKIPIF1<0的解由韋達(dá)定理SKIPIF1<0解得SKIPIF1<0

故不等式SKIPIF1<0為SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0故不等式SKIPIF1<0得其解集為SKIPIF1<0或SKIPIF1<0(2)當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0

令SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0由于SKIPIF1<0均為SKIPIF1<0的減函數(shù)故SKIPIF1<0在SKIPIF1<0上為減函數(shù)所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最大值,且最大值為3

所以SKIPIF1<0所以SKIPIF1<0所以實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.7.(2021·山東·棗莊市第三中學(xué)高一階段練習(xí))已知函數(shù)SKIPIF1<0(a∈R).(1)若關(guān)于x的不等式SKIPIF1<0<0的解集為(1,b),求a和b的值;(2)若對任意x∈SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.【答案】(1)a=3,b=4(2)SKIPIF1<0(1)解:因?yàn)椴坏仁絊KIPIF1<0<0的解集為(1,b),即SKIPIF1<0的解集為(1,b),所以1,b為SKIPIF1<0的兩根,所以由根與系數(shù)的關(guān)系知1+b=a+2且SKIPIF1<0=4,所以a=3,b=4;(2)解:∵對任意x∈SKIPIF1<0,SKIPIF1<0恒成立,∴SKIPIF1<0對任意的x∈[1,4]恒成立,當(dāng)x=1時(shí),0≤4恒成立,符合題意,所以a∈R;當(dāng)x∈SKIPIF1<0時(shí),問題等價(jià)于a≤SKIPIF1<0恒成立,即a≤SKIPIF1<0,∵SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即x=3時(shí)取等號,∴a≤4,綜上,a的取值范圍為SKIPIF1<0.④SKIPIF1<0上恒成立(優(yōu)選分離變量法)SKIPIF1<0SKIPIF1<01.(2021·河南信陽·高二期中(理))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0有解,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B令SKIPIF1<0,其對稱軸為SKIPIF1<0,關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0有解,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0.故選:B.2.(2021·安徽·池州市第一中學(xué)高一期中)若關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上有解則實(shí)數(shù)m的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:依題意,SKIPIF1<0,令SKIPIF1<0,故問題轉(zhuǎn)化為求函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值;因?yàn)槎魏瘮?shù)SKIPIF1<0的對稱軸為SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故選:A.3.(2021·河南·高二期中(理))已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上有解,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上有解,令SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號,所以SKIPIF1<0.故選:A.4.(2021·山西·大同一中高一期中)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0內(nèi)有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D依題意關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0內(nèi)有解,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D5.(2021·河北·石家莊市第四十四中學(xué)高一期中)若關(guān)于x的不等式SKIPIF1<0在區(qū)間SKIPIF1<0上有解,則實(shí)數(shù)m的取值范圍是__________.【答案】SKIPIF1<0因?yàn)镾KIPIF1<0,所以,由SKIPIF1<0得SKIPIF1<0,因?yàn)殛P(guān)于SKIPIF1<0的不等式SKIPIF1<0在區(qū)間(0,2]上有解,所以只需SKIPIF1<0小于等于SKIPIF1<0的最大值,又SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.6.(2021·福建省龍巖第一中學(xué)高一期中)已知不等式SKIPIF1<0有解,則實(shí)數(shù)SKIPIF1<0的取值范圍為__________.【答案】SKIPIF1<0解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,符合題意當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,由不等式SKIPIF1<0有解即SKIPIF1<0,得SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0開口向下,滿足SKIPIF1<0有解符合題意綜上,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0故答案為:SKIPIF1<0.7.(2021·河北·石家莊市藁城區(qū)第一中學(xué)高一階段練習(xí))已知函數(shù)SKIPIF1<0;(1)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;(2)存在SKIPIF1<0使得SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由題意知:1和m是SKIPIF1<0的兩根,故SKIPIF1<0,即SKIPIF1<0;(2)存在SKIPIF1<0使得SKIPIF1<0成立,即存在SKIPIF1<0,使得SKIPIF1<0成立,即存在SKIPIF1<0,使得SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)x=2時(shí)取等號,故SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.⑤已知參數(shù)SKIPIF1<0,求SKIPIF1<0取值范圍(變更主元法)1.(2022·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0【答案】C解:令SKIPIF1<0,則不等式SKIPIF1<0恒成立轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立.SKIPIF1<0有SKIPIF1<0,即SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.SKIPIF1<0的取值范圍為SKIPIF1<0.故選:C.2.(2022·全國·高三專題練習(xí))不等式SKIPIF1<0對一切SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A令SKIPIF1<0,對一切SKIPIF1<0均大于0恒成立,所以SKIPIF1<0,或SKIPIF1<0,或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,或SKIPIF1<0,綜上,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,或SKIPIF1<0.故選:A.3.(2021·全國·高一課時(shí)練習(xí))對任意的SKIPIF1<0,函數(shù)SKIPIF1<0的值總大于0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B對任意SKIPIF1<0,函數(shù)SKIPIF1<0的值恒大于零設(shè)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立.SKIPIF1<0在SKIPIF1<0上是關(guān)于SKIPIF1<0的一次函數(shù)或常數(shù)函數(shù),其圖象為一條線段,則只需線段的兩個(gè)端點(diǎn)在SKIPIF1<0軸上方,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查不等式在區(qū)間上恒成立問題,解答本題的關(guān)鍵是構(gòu)造函數(shù)SKIPIF1<0,將問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,考查學(xué)生的邏輯推理與運(yùn)算能力,屬于中檔題.4.(2021·江西吉安·高一期中)若不等式SKIPIF1<0對任意SKIPIF1<0成立,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A由題得不等式SKIPIF1<0對任意SKIPIF1<0成立,所以SKIPIF1<0,即SKIPIF1<0,解之得SKIPIF1<0或SKIPIF1<0.故選:A高頻考點(diǎn)五:一元二次不等式的應(yīng)用1.(2021·全國·高一課時(shí)練習(xí))某文具店購進(jìn)一批新型臺燈,每盞的最低售價(jià)為15元,若每盞按最低售價(jià)銷售,每天能賣出45盞,每盞售價(jià)每提高1元,日銷售量將減少3盞,為了使這批臺燈每天獲得600元以上的銷售收入,則這批臺燈的銷售單價(jià)x(單位:元)的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B由題意,得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0.又每盞的最低售價(jià)為15元,∴SKIPIF1<0.故選:B.2.(2021·河北·石家莊一中高一階段練習(xí))某城市對一種每件售價(jià)為160元的商品征收附加稅,稅率為SKIPIF1<0(即每銷售100元征稅SKIPIF1<0元),若年銷售量為SKIPIF1<0萬件,要使附加稅不少于128萬元,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A根據(jù)題意,要使附加稅不少于128萬元,則SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0.所以SKIPIF1<0的取值范圍是SKIPIF1<0,故選:A.3.(2021·全國·高一專題練習(xí))某文具店購進(jìn)一批新型臺燈,若按每盞臺燈15元的價(jià)格銷售,每天能賣出30盞;若售價(jià)每提高1元,日銷售量將減少2盞,現(xiàn)決定提價(jià)銷售,為了使這批臺燈每天獲得400元以上(不含400元)的銷售收入.則這批臺燈的銷售單價(jià)SKIPIF1<0(單位:元)的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C結(jié)合題意易知,SKIPIF1<0,即SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論