版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省衡陽市衡陽縣第三中學2024屆高考數(shù)學試題仿真試題(一)注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的展開式中的常數(shù)項為8,則實數(shù)()A.2 B.-2 C.-3 D.32.已知函數(shù),若關于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.3.函數(shù)的圖象與軸交點的橫坐標構成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位4.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.5.已知,滿足約束條件,則的最大值為A. B. C. D.6.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.7.做拋擲一枚骰子的試驗,當出現(xiàn)1點或2點時,就說這次試驗成功,假設骰子是質(zhì)地均勻的.則在3次這樣的試驗中成功次數(shù)X的期望為()A.13 B.18.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.9.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.96010.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.611.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.12.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)為_________.14.若的展開式中所有項的系數(shù)之和為,則______,含項的系數(shù)是______(用數(shù)字作答).15.已知是等比數(shù)列,且,,則__________,的最大值為__________.16.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的左、右焦點分別為,,焦距為2,且經(jīng)過點,斜率為的直線經(jīng)過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.18.(12分)已知,,且.(1)求的最小值;(2)證明:.19.(12分)已知,分別是橢圓:的左,右焦點,點在橢圓上,且拋物線的焦點是橢圓的一個焦點.(1)求,的值:(2)過點作不與軸重合的直線,設與圓相交于A,B兩點,且與橢圓相交于C,D兩點,當時,求△的面積.20.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.21.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).(1)分別求,關于x的函數(shù)關系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.22.(10分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先求的展開式,再分類分析中用哪一項與相乘,將所有結果為常數(shù)的相加,即為展開式的常數(shù)項,從而求出的值.【詳解】展開式的通項為,當取2時,常數(shù)項為,當取時,常數(shù)項為由題知,則.故選:A.【點睛】本題考查了兩個二項式乘積的展開式中的系數(shù)問題,其中對所取的項要進行分類討論,屬于基礎題.2、D【解析】
討論,,三種情況,求導得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當時,;當時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導數(shù)求函數(shù)的零點問題,意在考查學生的計算能力和應用能力.3、A【解析】依題意有的周期為.而,故應左移.4、D【解析】
由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.5、D【解析】
作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結合即可得到結論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經(jīng)過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.6、B【解析】
首先求得兩曲線的交點坐標,據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.7、C【解析】
每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點睛】本題考查了二項分布求數(shù)學期望,意在考查學生的計算能力和應用能力.8、A【解析】
首先的單調(diào)性,由此判斷出,由求得的關系式.利用導數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數(shù),.構造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點睛】本小題主要考查利用導數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉化的數(shù)學思想方法,屬于難題.9、B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產(chǎn)生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.【點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.10、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.11、B【解析】
根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.12、B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關幾何量的數(shù)據(jù)是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
變換,根據(jù)二項式定理計算得到答案.【詳解】的展開式的通項為:,,取和,計算得到系數(shù)為:.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力和應用能力.14、【解析】的展開式中所有項的系數(shù)之和為,,,項的系數(shù)是,故答案為(1),(2).15、5【解析】,即的最大值為16、【解析】在圓上其他位置任取一點B,設圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在;實數(shù)的取值范圍是【解析】
(1)根據(jù)橢圓定義計算,再根據(jù),,的關系計算即可得出橢圓方程;(2)設直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關系求出的中點坐標,求出的中垂線與軸的交點橫,得出關于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點,使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點.設直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關系可得,設的中點為,,則,,線段的中垂線方程為:,令可得,即.,故,當且僅當即時取等號,,且.的取值范圍是,.【點睛】本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關系,意在考查學生對這些知識的理解掌握水平和分析推理能力.18、(1)(2)證明見解析【解析】
(1)利用基本不等式即可求得最小值;(2)關鍵是配湊系數(shù),進而利用基本不等式得證.【詳解】(1),當且僅當“”時取等號,故的最小值為;(2),當且僅當時取等號,此時.故.【點睛】本題主要考查基本不等式的運用,屬于基礎題.19、(1);(2).【解析】
(1)由已知根據(jù)拋物線和橢圓的定義和性質(zhì),可求出,;(2)設直線方程為,聯(lián)立直線與圓的方程可以求出,再聯(lián)立直線和橢圓的方程化簡,由根與系數(shù)的關系得到結論,繼而求出面積.【詳解】(1)焦點為F(1,0),則F1(1,0),F(xiàn)2(1,0),,解得,=1,=1,(Ⅱ)由已知,可設直線方程為,,聯(lián)立得,易知△>0,則===因為,所以=1,解得聯(lián)立,得,△=8>0設,則【點睛】本題主要考查拋物線和橢圓的定義與性質(zhì)應用,同時考查利用根與系數(shù)的關系,解決直線與圓,直線與橢圓的位置關系問題.意在考查學生的數(shù)學運算能力.20、(1)見解析(2).【解析】
(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,,,,,所以,,.設平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.21、(1),.,.(2)當百米時,兩條直道的長度之和取得最小值百米.【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關于x的函數(shù)關系式;在和中,利用余弦定理,可得關于x的函數(shù)關系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關于x的函數(shù)關系式為,.在和中,由余弦定理,得①②因為M為的中點,所以.由①②,得,所以,所以.所以,直道長度關于x的函數(shù)關系式為,.法2:因為在中,,所以.所以,直道長度關于x的函數(shù)關系式為,.在中,因為M為的中點,所以.所以.所以,直道長度關于x的函數(shù)關系式為,.(2)由(1)得,兩條直道的長度之和為(當且僅當即時取“”).故當百米時,兩條直道的長度之和取得最小值百米.【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 九年級歷史下冊單元評價檢測課件
- 《證劵基礎知識最終》課件
- 《激光切割工藝》課件
- 荒山綠化項目可行性研究報告
- 《人力資源管理奧秘》課件
- 股份解禁協(xié)議三篇
- 專業(yè)畢業(yè)實習報告4篇
- 2023年-2024年企業(yè)主要負責人安全教育培訓試題及答案(易錯題)
- 2024員工三級安全培訓考試題帶解析答案可打印
- 2023年-2024年項目部安全管理人員安全培訓考試題附答案【培優(yōu)A卷】
- 2024年時事政治考點大全(173條)
- DB14-T 2730-2023 產(chǎn)后康復管理師等級劃分與評定
- 礦產(chǎn)資源總體規(guī)劃工作計劃
- 電力建設施工質(zhì)量驗收及評定規(guī)程-第1部分:土建工程
- 醫(yī)院消防安全知識試題及答案
- 高中體育足球教案
- 2025屆內(nèi)蒙古赤峰市、呼和浩特市高考考前模擬物理試題含解析
- 三年級數(shù)學(上)計算題專項練習附答案
- 中等職業(yè)學?!稒C械制造工藝基礎》課程標準
- 臨床醫(yī)學內(nèi)科學消化系統(tǒng)疾病教案脂肪性肝病教案
- 2024年江蘇省南通市中考英語試卷(含答案解析)
評論
0/150
提交評論