版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省昆明市師大附中2025屆高考壓軸卷數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若變量,滿足,則的最大值為()A.3 B.2 C. D.102.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個3.已知為拋物線的焦點(diǎn),點(diǎn)在上,若直線與的另一個交點(diǎn)為,則()A. B. C. D.4.已知向量滿足,且與的夾角為,則()A. B. C. D.5.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.06.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.7.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.08.已知定義在上的奇函數(shù),其導(dǎo)函數(shù)為,當(dāng)時,恒有.則不等式的解集為().A. B.C.或 D.或9.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽(yù)國內(nèi)外.據(jù)統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.954410.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.11.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域的概率為()A. B. C. D.12.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則__________.14.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點(diǎn)均在球的球面上,則球的表面積為_____.15.定義在上的奇函數(shù)滿足,并且當(dāng)時,則___16.已知各棱長都相等的直三棱柱(側(cè)棱與底面垂直的棱柱稱為直棱柱)所有頂點(diǎn)都在球的表面上.若球的表面積為則該三棱柱的側(cè)面積為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足(),數(shù)列的前項(xiàng)和,(),且,.(1)求數(shù)列的通項(xiàng)公式:(2)求數(shù)列的通項(xiàng)公式.(3)設(shè),記是數(shù)列的前項(xiàng)和,求正整數(shù),使得對于任意的均有.18.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點(diǎn),滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點(diǎn),使得直線與平面所成角的大小為30°,求的值.19.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交于、兩點(diǎn),求的面積.21.(12分)已知橢圓:,不與坐標(biāo)軸垂直的直線與橢圓交于,兩點(diǎn).(Ⅰ)若線段的中點(diǎn)坐標(biāo)為,求直線的方程;(Ⅱ)若直線過點(diǎn),點(diǎn)滿足(,分別為直線,的斜率),求的值.22.(10分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.2、B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計算,可得結(jié)果.【詳解】由題可知:,當(dāng)時,當(dāng)時,當(dāng)時,當(dāng)時,所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個數(shù)的計算,當(dāng)集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.3、C【解析】
求得點(diǎn)坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點(diǎn)坐標(biāo),進(jìn)而求得【詳解】拋物線焦點(diǎn)為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點(diǎn)睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.4、A【解析】
根據(jù)向量的運(yùn)算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點(diǎn)睛】本題主要考查數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.5、B【解析】
根據(jù)復(fù)數(shù)除法的運(yùn)算法則,即可求解.【詳解】.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)運(yùn)算,屬于基礎(chǔ)題.6、D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.7、B【解析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因?yàn)榧炊詩A角為故選:B【點(diǎn)睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.8、D【解析】
先通過得到原函數(shù)為增函數(shù)且為偶函數(shù),再利用到軸距離求解不等式即可.【詳解】構(gòu)造函數(shù),則由題可知,所以在時為增函數(shù);由為奇函數(shù),為奇函數(shù),所以為偶函數(shù);又,即即又為開口向上的偶函數(shù)所以,解得或故選:D【點(diǎn)睛】此題考查根據(jù)導(dǎo)函數(shù)構(gòu)造原函數(shù),偶函數(shù)解不等式等知識點(diǎn),屬于較難題目.9、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實(shí)直徑在內(nèi)的概率為0.8185.故選:C【點(diǎn)睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.10、C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)?,非奇非偶函?shù),排除;B.,值域?yàn)?,奇函?shù),排除;C.,值域?yàn)?,奇函?shù),滿足;D.,值域?yàn)?,非奇非偶函?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對于函數(shù)知識的綜合應(yīng)用.11、C【解析】
據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計算公式可得,故選:C.【點(diǎn)睛】本題主要考查了幾何概率的計算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.12、B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解:由題意可知:.14、【解析】
做中點(diǎn),的中點(diǎn),連接,由已知條件可求出,運(yùn)用余弦定理可求,從而在平面中建立坐標(biāo)系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標(biāo)系的坐標(biāo)可求,通過球心滿足,即可求出的坐標(biāo),從而可求球的半徑,進(jìn)而能求出球的表面積.【詳解】解:如圖做中點(diǎn),的中點(diǎn),連接,由題意知,則設(shè)的外接圓圓心為,則在直線上且設(shè)長方形的外接圓圓心為,則在上且.設(shè)外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標(biāo)原點(diǎn),以所在直線為軸,以過點(diǎn)垂直于軸的直線為軸,如圖建立坐標(biāo)系,由題意知,在平面中且設(shè),則,因?yàn)椋越獾?則所以球的表面積為.故答案為:.【點(diǎn)睛】本題考查了幾何體外接球的問題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過將幾何體補(bǔ)充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設(shè)半徑列方程求解;三是通過空間、平面坐標(biāo)系進(jìn)行求解.15、【解析】
根據(jù)所給表達(dá)式,結(jié)合奇函數(shù)性質(zhì),即可確定函數(shù)對稱軸及周期性,進(jìn)而由的解析式求得的值.【詳解】滿足,由函數(shù)對稱性可知關(guān)于對稱,且令,代入可得,由奇函數(shù)性質(zhì)可知,所以令,代入可得,所以是以4為周期的周期函數(shù),則當(dāng)時,所以,所以,故答案為:.【點(diǎn)睛】本題考查了函數(shù)奇偶性與對稱性的綜合應(yīng)用,周期函數(shù)的判斷及應(yīng)用,屬于中檔題.16、【解析】
只要算出直三棱柱的棱長即可,在中,利用即可得到關(guān)于x的方程,解方程即可解決.【詳解】由已知,,解得,如圖所示,設(shè)底面等邊三角形中心為,直三棱柱的棱長為x,則,,故,即,解得,故三棱柱的側(cè)面積為.故答案為:.【點(diǎn)睛】本題考查特殊柱體的外接球問題,考查學(xué)生的空間想象能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)().(2),.(3)【解析】
(1)依題意先求出,然后根據(jù),求出的通項(xiàng)公式為,再檢驗(yàn)的情況即可;(2)由遞推公式,得,結(jié)合數(shù)列性質(zhì)可得數(shù)列相鄰項(xiàng)之間的關(guān)系,從而可求出結(jié)果;(3)通過(1)、(2)可得,所以,,,,.記,利用函數(shù)單調(diào)性可求的范圍,從而列不等式可解.【詳解】解:(1)因?yàn)閿?shù)列滿足()①;②當(dāng)時,.檢驗(yàn)當(dāng)時,成立.所以,數(shù)列的通項(xiàng)公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因?yàn)?所以,上式同除以,得,,即,所以,數(shù)列時首項(xiàng)為1,公差為1的等差數(shù)列,故,.(3)因?yàn)椋?,,,.記,當(dāng)時,.所以,當(dāng)時,數(shù)列為單調(diào)遞減,當(dāng)時,.從而,當(dāng)時,.因此,.所以,對任意的,.綜上,.【點(diǎn)睛】本題考在數(shù)列通項(xiàng)公式的求法、等差數(shù)列的定義及通項(xiàng)公式、數(shù)列的單調(diào)性,考查考生的邏輯思維能力、運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想、分類討論思想.18、(Ⅰ)證明見解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因?yàn)槭堑闹悬c(diǎn),即得證;(Ⅱ)如圖建立空間直角坐標(biāo)系,設(shè),計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點(diǎn),連接,則是平面與平面的交線,因?yàn)槠矫?,故,又因?yàn)槭堑闹悬c(diǎn),所以是的中點(diǎn),故.(Ⅱ)由條件可知,,所以,故以為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè),則,設(shè)平面的法向量為,則,即,故取因?yàn)橹本€與平面所成角的大小為30°所以,即,解得,故此時.【點(diǎn)睛】本題考查了立體幾何和空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19、(1)(2)【解析】
(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)?,所以解得(舍)或所以,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.20、(1),;(2).【解析】
(1)在直線的參數(shù)方程中消去參數(shù)可得出直線的普通方程,在曲線的極坐標(biāo)方程兩邊同時乘以,結(jié)合可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)計算出直線截圓所得弦長,并計算出原點(diǎn)到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標(biāo)方程是;(2)因?yàn)榍€的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據(jù)點(diǎn)差法,即可求得直線的斜率,則方程即可求得;(Ⅱ)設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達(dá)定理,根據(jù),即可求得參數(shù)的值.【詳解】(1)設(shè),,則兩式相減,可得.(*)因?yàn)榫€段的中點(diǎn)坐標(biāo)為,所以,.代入(*)式,得.所以直線的斜率.所以直線的方程為,即.(Ⅱ)設(shè)直線:(),聯(lián)立整理得.所以,解得.所以,.所以,所以.所以.因?yàn)?,所?【點(diǎn)睛】本題考查中點(diǎn)弦問題的點(diǎn)差法求解,以及利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版再婚夫妻離婚規(guī)定3篇
- 梅河口康美職業(yè)技術(shù)學(xué)院《數(shù)學(xué)課程與教學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 眉山藥科職業(yè)學(xué)院《擴(kuò)聲技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年物流運(yùn)輸服務(wù)合同標(biāo)的詳細(xì)描述
- 馬鞍山學(xué)院《形態(tài)學(xué)整合實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年勞動合同樣本新編3篇
- 2024年標(biāo)準(zhǔn)化電腦與辦公設(shè)備采購協(xié)議范例版B版
- 漯河醫(yī)學(xué)高等??茖W(xué)校《職業(yè)教育經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 漯河食品職業(yè)學(xué)院《植物營養(yǎng)診斷與施肥(實(shí)驗(yàn))》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年創(chuàng)新型門面房租賃合作協(xié)議6篇
- NB∕T 13007-2021 生物柴油(BD100)原料 廢棄油脂
- GB/T 20624.2-2006色漆和清漆快速變形(耐沖擊性)試驗(yàn)第2部分:落錘試驗(yàn)(小面積沖頭)
- GB/T 12771-2019流體輸送用不銹鋼焊接鋼管
- GB/T 10125-2012人造氣氛腐蝕試驗(yàn)鹽霧試驗(yàn)
- 維修電工-基于7812穩(wěn)壓電路(中級)-動畫版
- PV測試方法簡介-IV
- 病理學(xué)實(shí)驗(yàn)切片考試圖片授課課件
- 2021離婚協(xié)議書電子版免費(fèi)
- 國家開放大學(xué)《組織行為學(xué)》章節(jié)測試參考答案
- 電子課件機(jī)械基礎(chǔ)(第六版)完全版
- 臨沂十二五城市規(guī)劃研究專題課件
評論
0/150
提交評論