蘇州大學(xué)應(yīng)用技術(shù)學(xué)院《數(shù)據(jù)處理與分析》2021-2022學(xué)年第一學(xué)期期末試卷_第1頁(yè)
蘇州大學(xué)應(yīng)用技術(shù)學(xué)院《數(shù)據(jù)處理與分析》2021-2022學(xué)年第一學(xué)期期末試卷_第2頁(yè)
蘇州大學(xué)應(yīng)用技術(shù)學(xué)院《數(shù)據(jù)處理與分析》2021-2022學(xué)年第一學(xué)期期末試卷_第3頁(yè)
蘇州大學(xué)應(yīng)用技術(shù)學(xué)院《數(shù)據(jù)處理與分析》2021-2022學(xué)年第一學(xué)期期末試卷_第4頁(yè)
蘇州大學(xué)應(yīng)用技術(shù)學(xué)院《數(shù)據(jù)處理與分析》2021-2022學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線(xiàn)第1頁(yè),共3頁(yè)蘇州大學(xué)應(yīng)用技術(shù)學(xué)院《數(shù)據(jù)處理與分析》

2021-2022學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的回歸分析用于建立自變量和因變量之間的關(guān)系模型。假設(shè)我們要研究房?jī)r(jià)與房屋面積、地理位置等因素的關(guān)系。以下關(guān)于回歸分析的描述,哪一項(xiàng)是不正確的?()A.多元線(xiàn)性回歸可以同時(shí)考慮多個(gè)自變量對(duì)因變量的影響B(tài).回歸模型的擬合優(yōu)度可以通過(guò)R平方值來(lái)評(píng)估C.存在共線(xiàn)性問(wèn)題時(shí),回歸模型的參數(shù)估計(jì)會(huì)不準(zhǔn)確,但不影響預(yù)測(cè)效果D.可以通過(guò)逐步回歸等方法選擇對(duì)因變量有顯著影響的自變量2、在數(shù)據(jù)挖掘中,以下哪種算法常用于對(duì)客戶(hù)進(jìn)行分類(lèi),以實(shí)現(xiàn)精準(zhǔn)營(yíng)銷(xiāo)?()A.決策樹(shù)算法B.關(guān)聯(lián)規(guī)則算法C.神經(jīng)網(wǎng)絡(luò)算法D.遺傳算法3、在數(shù)據(jù)挖掘中,若要對(duì)圖像數(shù)據(jù)進(jìn)行分析,以下哪種技術(shù)可能會(huì)被用到?()A.深度學(xué)習(xí)B.決策樹(shù)C.關(guān)聯(lián)規(guī)則D.因子分析4、在處理大數(shù)據(jù)集時(shí),分布式計(jì)算框架能夠提高計(jì)算效率。假設(shè)要分析海量的社交媒體數(shù)據(jù),以下關(guān)于分布式計(jì)算框架選擇的描述,正確的是:()A.Hadoop適合處理大規(guī)模的結(jié)構(gòu)化數(shù)據(jù),但對(duì)實(shí)時(shí)性要求高的任務(wù)不太適用B.Spark僅能處理批處理任務(wù),無(wú)法支持流處理C.Flink在處理流數(shù)據(jù)方面表現(xiàn)不佳,主要用于批處理D.這些分布式計(jì)算框架都差不多,隨便選擇一個(gè)都能滿(mǎn)足需求5、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘算法的選擇很重要。以下關(guān)于數(shù)據(jù)挖掘算法選擇的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘算法的選擇應(yīng)根據(jù)數(shù)據(jù)的特點(diǎn)、分析目的和計(jì)算資源等因素來(lái)確定B.不同的數(shù)據(jù)挖掘算法適用于不同類(lèi)型的數(shù)據(jù)和問(wèn)題,沒(méi)有一種算法是萬(wàn)能的C.選擇數(shù)據(jù)挖掘算法時(shí),可以參考其他類(lèi)似項(xiàng)目的經(jīng)驗(yàn),但不能完全照搬D.數(shù)據(jù)挖掘算法的選擇只需要考慮算法的準(zhǔn)確性,其他因素如計(jì)算效率等可以忽略不計(jì)6、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,以下哪個(gè)原則有助于提高數(shù)據(jù)庫(kù)的性能和可擴(kuò)展性?()A.規(guī)范化B.反規(guī)范化C.減少冗余D.增加索引7、數(shù)據(jù)分析中的模型評(píng)估指標(biāo)用于衡量模型的性能。假設(shè)要評(píng)估一個(gè)預(yù)測(cè)客戶(hù)流失的模型,以下關(guān)于評(píng)估指標(biāo)選擇的描述,正確的是:()A.只關(guān)注準(zhǔn)確率,不考慮其他指標(biāo)如召回率和精確率B.不根據(jù)業(yè)務(wù)需求選擇合適的評(píng)估指標(biāo),隨意使用通用指標(biāo)C.結(jié)合業(yè)務(wù)場(chǎng)景和問(wèn)題的嚴(yán)重性,綜合考慮準(zhǔn)確率、召回率、精確率、F1值、AUC等指標(biāo),評(píng)估模型在不同方面的表現(xiàn),并根據(jù)評(píng)估結(jié)果進(jìn)行優(yōu)化和改進(jìn)D.認(rèn)為模型評(píng)估指標(biāo)越高越好,不考慮指標(biāo)之間的平衡和trade-off8、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的結(jié)果解釋和評(píng)估是確保結(jié)果可靠性的重要環(huán)節(jié)。以下關(guān)于數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估應(yīng)結(jié)合具體的業(yè)務(wù)問(wèn)題和背景進(jìn)行B.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估可以使用統(tǒng)計(jì)方法和可視化工具來(lái)輔助C.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估應(yīng)考慮結(jié)果的準(zhǔn)確性、可靠性和實(shí)用性等方面D.數(shù)據(jù)挖掘結(jié)果解釋和評(píng)估只需要由數(shù)據(jù)分析師進(jìn)行,不需要其他人員參與9、在數(shù)據(jù)分析中,數(shù)據(jù)分析的流程包括多個(gè)步驟,其中問(wèn)題定義是第一個(gè)步驟。以下關(guān)于問(wèn)題定義的描述中,錯(cuò)誤的是?()A.問(wèn)題定義應(yīng)該明確數(shù)據(jù)分析的目的和需求B.問(wèn)題定義應(yīng)該考慮數(shù)據(jù)的可用性和可獲取性C.問(wèn)題定義應(yīng)該確定數(shù)據(jù)分析的方法和工具D.問(wèn)題定義可以根據(jù)需要進(jìn)行調(diào)整和修改,以適應(yīng)不同的情況10、對(duì)于一個(gè)不平衡的數(shù)據(jù)集(例如,某一類(lèi)別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類(lèi)別),以下哪種方法可以提高模型對(duì)少數(shù)類(lèi)別的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.調(diào)整分類(lèi)閾值D.以上都是11、對(duì)于一個(gè)分類(lèi)問(wèn)題,如果不同類(lèi)別的樣本數(shù)量差異較大,在評(píng)估模型性能時(shí),以下哪種指標(biāo)需要特別關(guān)注?()A.準(zhǔn)確率B.召回率C.F1值D.以上都是12、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是存儲(chǔ)和管理數(shù)據(jù)的重要工具。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以整合來(lái)自不同數(shù)據(jù)源的數(shù)據(jù),為數(shù)據(jù)分析提供統(tǒng)一的數(shù)據(jù)視圖B.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)通常是經(jīng)過(guò)清洗和轉(zhuǎn)換的,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源,且維護(hù)成本較高D.數(shù)據(jù)倉(cāng)庫(kù)只適用于大型企業(yè),對(duì)于中小企業(yè)來(lái)說(shuō)沒(méi)有必要建設(shè)13、在進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性14、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀(guān)地理解數(shù)據(jù)。假設(shè)我們要展示不同地區(qū)的銷(xiāo)售額及其隨時(shí)間的變化趨勢(shì),以下哪種可視化圖表可能是最適合的?()A.餅圖B.柱狀圖C.折線(xiàn)圖D.箱線(xiàn)圖15、數(shù)據(jù)分析中的分類(lèi)算法用于將數(shù)據(jù)分為不同的類(lèi)別。假設(shè)要根據(jù)客戶(hù)的消費(fèi)行為將其分為高價(jià)值客戶(hù)和低價(jià)值客戶(hù),以下關(guān)于分類(lèi)算法選擇的描述,正確的是:()A.隨意選擇一種分類(lèi)算法,不考慮數(shù)據(jù)的特征和算法的適用性B.只關(guān)注分類(lèi)算法的準(zhǔn)確率,不考慮召回率和F1值等其他評(píng)估指標(biāo)C.深入分析數(shù)據(jù)特征和業(yè)務(wù)需求,比較不同分類(lèi)算法的性能,如決策樹(shù)、支持向量機(jī)、神經(jīng)網(wǎng)絡(luò)等,并選擇最適合的算法,同時(shí)結(jié)合多種評(píng)估指標(biāo)進(jìn)行綜合評(píng)價(jià)D.認(rèn)為分類(lèi)算法的參數(shù)設(shè)置不重要,使用默認(rèn)參數(shù)即可二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)闡述數(shù)據(jù)質(zhì)量評(píng)估的指標(biāo)和方法,說(shuō)明如何通過(guò)數(shù)據(jù)質(zhì)量評(píng)估來(lái)發(fā)現(xiàn)和解決數(shù)據(jù)中的問(wèn)題,并舉例說(shuō)明。2、(本題5分)解釋數(shù)據(jù)可視化中的多變量可視化,說(shuō)明如何同時(shí)展示多個(gè)變量之間的關(guān)系,如平行坐標(biāo)圖、雷達(dá)圖等。3、(本題5分)異常檢測(cè)在數(shù)據(jù)分析中具有重要意義,請(qǐng)闡述常見(jiàn)的異常檢測(cè)算法,如基于統(tǒng)計(jì)的方法、基于距離的方法等的原理和應(yīng)用場(chǎng)景。4、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的特征縮放?請(qǐng)介紹特征縮放的方法和目的,并舉例說(shuō)明其在模型訓(xùn)練中的作用。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在制造業(yè)的新品研發(fā)過(guò)程中,如何借助數(shù)據(jù)分析來(lái)了解市場(chǎng)需求、競(jìng)品分析和用戶(hù)反饋,以提高新品的成功率和市場(chǎng)適應(yīng)性?請(qǐng)?jiān)敿?xì)分析數(shù)據(jù)在研發(fā)各個(gè)階段的作用和應(yīng)用方法。2、(本題5分)旅游行業(yè)可以利用數(shù)據(jù)分析來(lái)了解游客的行為模式、偏好和需求。闡述如何通過(guò)數(shù)據(jù)分析優(yōu)化旅游產(chǎn)品設(shè)計(jì)、旅游線(xiàn)路規(guī)劃、旅游資源配置,以及如何應(yīng)對(duì)旅游旺季和淡季的需求變化。3、(本題5分)在醫(yī)療影像診斷中,如何利用數(shù)據(jù)分析來(lái)輔助醫(yī)生進(jìn)行疾病判斷、提高診斷準(zhǔn)確性和效率?請(qǐng)?zhí)接憯?shù)據(jù)分析技術(shù)在醫(yī)療影像領(lǐng)域的應(yīng)用、數(shù)據(jù)的安全性和醫(yī)生的培訓(xùn)需求。4、(本題5分)在醫(yī)療影像數(shù)據(jù)分析中,如何運(yùn)用深度學(xué)習(xí)技術(shù)輔助疾病診斷,提高診斷的準(zhǔn)確性和效率,減輕醫(yī)生的工作負(fù)擔(dān)。5、(本題5分)在金融市場(chǎng)的量化投資中,數(shù)據(jù)分析和算法交易發(fā)揮著重要作用。以某量化投資基金為例,討論如何利用數(shù)據(jù)分析來(lái)構(gòu)建投資策略、篩選股票、控制風(fēng)險(xiǎn),以及如何應(yīng)對(duì)市場(chǎng)的突發(fā)事件和模型失效的風(fēng)險(xiǎn)。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某在線(xiàn)英語(yǔ)繪本閱讀平臺(tái)收集了用戶(hù)閱讀數(shù)據(jù)、繪本難度評(píng)價(jià)、孩子興趣反饋等。推薦適合不同年齡段孩子的英語(yǔ)繪本。2、(本題10分)某運(yùn)動(dòng)品牌公司收集了不同地區(qū)門(mén)店的銷(xiāo)售數(shù)據(jù)、消

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論