版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
updatedQuarterly
|GenAI,LLMSecOpsandSecuritySolutionLandscape
RevisionHistory
Revision
Date
Authors
Description
.01
6/4/2024
ScottClinton
InitialDraftICharter
.05
8/10/2024
ScottClintonI
ContributorsInputs
Updatedwithinitialfeedback
.06
10/15/2024
ScottClintonI
ContributorsIReviewerInputs
Re-factorSolutions
LandscapecategoriesI
1.0
10/15/2024
ContributorsIReviewers
FinalReleaseCandidate
TheinformationprovidedinthisdocumentdoesnotIandisnotintendedtoIconstitutelegaladvice.Allinformationisforgeneralinformationalpurposesonly.Thisdocumentcontainslinkstootherthird-partywebsites.SuchlinksareonlyforconvenienceIandOWASPdoesnotrecommend
orendorsethecontentsofthethird-partysites.
LicenseandUsage
ThisdocumentisIicensedunderCreativeCommons,CCBY-SA4.0Youarefreeto:
●Share—copyandredistributethematerialinanymediumorformat
●Adapt—remixItransformIandbuilduponthematerialforanypurposeIevencommercially.
●Underthefollowingterms:
oAttribution—YoumustgiveappropriatecreditIprovidealinktothelicenseIandindicateifchangesweremade.Youmaydosoinanyreasonablemannerbutnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.
oAttributionGuidelines-mustincludetheprojectnameaswellasthenameoftheassetReferenced
■OWASPTop10forLLMs-LLMSecOpsSolutionsLandscape
■OWASPTop10forLLMs-CyberSecuritySolutionandLLMSecOpsLandscapeGuide
●ShareAlike—IfyouremixItransformIorbuilduponthematerialIyoumustdistributeyourcontributionsunderthesamelicenseastheoriginal.
Linktofulllicensetext:
/licenses/by–sa/4.0/legalcode
TheinformationprovidedinthisdocumentdoesnotIandisnotintendedtoIconstitutelegaladvice.Allinformationisfor
generalinformationalpurposesonly.Thisdocumentcontainslinkstootherthird-partywebsites.Suchlinksareonlyfor
convenienceandOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.
Version1.01of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
Contents
WhoIsThisDocumentFor? 3
Objectives 3
Scope 3
Introduction 4
DefiningtheSecuritySolutionsLandscape 4
LandscapeConsiderations 4
LLMApplicationCategories,SecurityChallenges 5
StaticPromptAugmentationAppIications 6
AgenticAppIications 7
LLMPIug-ins,Extensions 8
CompIexAppIications 9
LLMDevelopmentandConsumptionModels 10
LLMOpsandLLMSecOpsDefined 11
AQuickOpsPrimer-FoundationforLLMOps 11
LLMOpsLifeCYcIeStages-FoundationforLLMDevSecOps 12
Scoping/PIanning 13
DataAugmentationandFine-Tuning 14
AppIicationDeveIopmentandExperimentation 14
TestandEvaIuation 15
ReIease 15
DepIoY 16
Operate 16
Monitor 17
Govern 18
MappingtotheOWASPTop10forLLMThreatModeI 18
AppIicationServices 19
ProductionServices 19
OWASPTop10forLLMsSolutionsLandscape 20
EmergingGenAI/LLM-SpecificSecuritYSoIutions 21
LLM&GenerativeAISecuritYSoIutions 22
SoIutionLandscapeMatrixDefinitions 22
LandscapeSoIutionMatrix 23
Acknowledgements 29
OWASPTop10forLLMProjectSponsors 30
References 31
ProjectSupporters 32
Version1.02of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
WhoIsThisDocumentFor?
ThisdocumentistailoredforadiverseaudiencecomprisingdevelopersIAppSecprofessionalsIDevSecOpsandMLSecOpsteamsIdataengineersIdatascientistsICISOsIandsecurityleaderswhoarefocusedondevelopingstrategiestosecureLargeLanguageModels(LLMs)andGenerativeAIapplications.ItprovidesareferenceguideofthesolutionsavailabletoaidinsecuringLLMapplicationsIequippingthemwiththeknowledgeandtoolsnecessarytobuildrobustIsecureAIapplications.
Objectives
ThisdocumentisintendedtobeacompaniontotheOWASPTop10forLargeLanguageModel(LLM)ApplicationsListandtheCISOCybersecurity&GovernanceChecklist.Itsprimaryobjectiveistoprovideareferenceresourcefororganizationsseekingtoaddresstheidenti?edrisksandenhancetheirsecurityprograms.Whilenotdesignedtobeanall-inclusiveresourceIthisdocumentoffersaresearchedpointofviewbasedonthetopsecuritycategoriesandemergingthreatareas.Itcapturesthemostimpactfulexistingandemergingcategories.BycategorizingIde?ningIandaligningapplicabletechnologysolutionareaswiththeemergingLLMandgenerativeAIthreatlandscapeIthisdocumentaimstosimplifyresearcheffortsandserveasasolutionsreferenceguide.
Scope
Thescopeofthisdocumentistocreateasharedde?nitionofsolutioncategoryareasthataddressthesecurityoftheLLMandgenerativeAIlifecycleIfromdevelopmenttodeploymentandusage.ThisalignmentsupportstheOWASPTop10ListForLLMsoutcomesandtheCISOCybersecurityandGovernanceChecklist.ToachievethisIthedocumentwillcreateaninitialframeworkandcategorydescriptorsIutilizingbothopen-sourcesolutionsandprovidingmechanismsforsolutionproviderstoaligntheirofferingswithspeci?ccoverageareasasexamplestosupporteachcategory.
Thedocumentadherestoseveralkeyrulestomaintainitsintegrityandusefulness:
●Vendor-AgnosticandOpenApproach:ItmaintainsaneutralstanceIavoidingrecommendationsofonetechnologyoveranotherIinsteadprovidingcategoryguidancewithchoicesandoptions.
●Straightforward,ActionableGuidance:ThedocumentoffersclearIactionableadvicethatorganizationscanreadilyimplement.
●CoordinatedKnowledgeGraph:ItincludescoordinatedtermsIde?nitionsIanddescriptionsforkeyconcepts.
●PointtoExistingStandards:WhereexistingstandardsorsourcesoftruthareavailableIthedocumentreferencestheseinsteadofcreatingnewsourcesIensuringconsistencyandreliability.
Version1.03of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
Introduction
WiththegrowthofGenerativeAIadoption,usage,andappIicationdeveIopmentcomesnewrisksthataffecthoworganizationsstrategizeandinvest.AstheserisksevoIve,sodoriskmitigationsoIutions,technoIogies,frameworks,andtaxonomies.ToaidsecurityIeadersinprioritization,conversationsaboutemergingtechnoIogyandsoIutionareasmustbeaIignedappropriateIytocIearIyunderstoodbusinessoutcomesforAIsecuritysoIutions.ThebusinessoutcomesofAIsecuritysolutionsmustbeproperlyde?nedtoaidsecurityleadersinbudgeting
ManyorganizationshavealreadyinvestedheavilyinvarioussecuritytoolsIsuchasvulnerabilitymanagementsystemsIidentityandaccessmanagement(IAM)solutionsIendpointsecurityIDynamicApplicationSecurityTesting(DAST)IobservabilityplatformsIandsecureCI/CD(ContinuousIntegration/ContinuousDeployment)toolsItonameafew.HoweverIthesetraditionalsecuritytoolsmaynotbesu代cienttofullyaddressthecomplexitiesofAIapplicationsIleadingtogapsinprotectionthatmaliciousactorscanexploit.ForexampleItraditionalsecuritytoolsmaynotsu代cientlyaddresstheuniquedatasecurityandsensitiveinformationdisclosureprotectioninthecontextofLLMandGenAIapplications.ThisincludesbutisnotlimitedtothechallengesofsecuringsensitivedatawithinpromptsIoutputsIandmodeltrainingdataIandthespeci?cmitigationstrategiessuchasencryptionIredactionIandaccesscontrolmechanisms.
EmergentsolutionslikeLLMFirewallsIAI-speci?cthreatdetectionsystemsIsecuremodeldeploymentplatformsIandAIgovernanceframeworksattempttoaddresstheuniquesecurityneedsofAI/MLapplications.HoweverItherapidevolutionofAI/MLtechnologyanditsapplicationshasdrivenanexplosionofsolutionapproachesIwhichhasonlyaddedtotheconfusionfacedbyorganizationsindeterminingwheretoallocatetheirsecuritybudgets.
DefiningtheSecuritySolutionsLandscape
TherehavebeenmanyapproachestocharacterizingthesolutionslandscapeforLargeLanguageModeltoolsandinfrastructure.InordertodevelopasolutionslandscapethatfocusesonthesecurityofLLMapplicationsacrossthelifecyclefromplanningIdevelopmentIdeploymentIandoperationItherearefourkeyareasofinputwehavefocusedontodevelopbothade?nitionforLargeLanguageModelDevSecOPsandrelatedsolutionslandscapecategories.
LandscapeConsiderations
ApplicationTypesandScope-whichimpactsthepeopleIprocessesIandtoolsneededbasedonthecomplexityoftheapplicationandtheLLMenvironmentIas-a-serviceIself-hostedIorcustom-built.
EmergingLLMSecOpsProcess-whilethisisaworkinprogressImanyarelookingtoadaptandadoptexistingDevOpsandMLOpsandassociatedsecuritypractices.Weexpectourde?nitiontoevolveasthedevelopmentprocessesforLLMapplicationsbegintomature.
Version1.04of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
ThreatandRiskModeling-understandingtherisksposedbyLLMsystemsIapplicationusageIormisuselikethoseoutlinedintheOWASPTop10forLLMsandGenerativeAIApplicationsIarekeytounderstandingwhichsolutionsarebestsuitedtoimprovethesecuritypostureandcombatarangeofattacks.
TrackingEmergingSolutions-manyexistingsecuritysolutionsareadaptingtosupportLLMdevelopmentwork?owsandusecaseshowevergiventhenatureofnewthreatsandevolvingtechnologyandarchitecturesnewtypesofLLM-speci?csecuritysolutionswillbenecessary.
LLMApplicationCategories,SecurityChallenges
OrganizationshavebeenleveragingMachineLearninginapplicationsfordecades.ThisoftenrequireddetailedexpertiseinDataScienceandextensivemodeltraining.GenerativeAIhaschangedthis.Speci?callyILargeLanguageModels(LLMs)havemademachinelearningtechnologywidelyaccessible.Theabilitytodynamicallyinteractinplainlanguagehasopenedthedoorforthecreationofanewclassofdata-drivenapplicationsandapplicationintegrations.FurthermoreIusageisnolongerlimitedtothehighlyskilledeffortsoftraditionaldevelopersanddatascientists.Pre-trainedmodelsenablenearlyanyonetoperformcomplexcomputationaltasksIregardlessofpriorexposuretoprogrammingorsecurity.OrganizationshavebeenleveragingMachineLearninginapplicationsfordecadesincludingNaturalLanguageProcessing(NLP)modelsthatoftenrequiredetailedexpertiseinDataScienceandextensivemodeltraining.
Withtheadventoftransformerstechnologyenablinggenerativecapabilitiescombinedwiththeeaseofaccessforpre-trainedas-a-servicemodelslikeChatGPTandotheras-a-serviceIFourmajorcategoriesofLLMApplicationArchitectureemerged;Prompt-centricIAIAgentsIPlug-ins/extensionsIandcomplexgenerativeAIapplicationwheretheLLMplaysakeyroleinalargerapplicationusecase.
(?gure:ApplicationCategories&SummaryAttributes)
HavingacommonviewoftypicalLLMapplicationarchitecturesIincludingagentsImodelsILLMsIandtheMLapplicationstackIiscrucialforde?ningandaligningtheapplicationstackIsecuritymodelIandapplicationofferings.BelowIwehaveprovidedashortdescriptionofkeycharacteristicsIusecasesIandsecuritychallengesforeachapplicationcategory.
Version1.05of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
StaticPromptAugmentationApplications
Theseapplicationsinvolvespeci?cstaticnaturaIIanguageinputstoguidethebehaviorofa
largelanguagemodel(LLM)towardgeneratingthedesiredoutput.Thistechniqueoptimizestheinteractionbetweentheuserandthemodelby?ne-tuningthephrasingIcontextIandinstructionsgiventotheLLM.Theseapplicationsallowuserstoaccomplishawiderangeoftasksbysimply
re?ninghowtheyaskquestionsorprovideinstructions.
KeyCharacteristics
oHumantomodel/modeltohumaninteractionandresponse
oStaticpromptaugmentation
oFlexibilityandCreativity
oSimplicityandAccessibility
oRapidPrototypingandExperimentation
UseCaseExamples
oExperimentation/RapidPrototyping
oContentGenerationTools
oTextSummarizationApplications
oQuestion-AnsweringSystems
oLanguageTranslationTools
oChatbotsandVirtualAssistants
SecurityChallenges
oPrompt-basedapplicationsfacesecurityriskslikepromptinjectionattacksand
dataleakagefrompoorlycraftedprompts.Lackofcontextorstatemanagement
canleadtounintendedoutputsIincreasingmisusevulnerability.User-generated
promptsmaycauseinconsistentorbiasedresponsesIriskingcomplianceorethicalviolations.EnsuringpromptintegrityIrobustinputvalidationIandsecuringtheLLMenvironmentarecrucialtomitigatetheserisks.
Version1.06of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
AgenticApplications
TheseapplicationsleverageLargeLanguageModels(LLMs)toautonomouslyorsemi-autonomouslyperformtasksImakedecisionsIandinteractwithusersorothersystems.TheseagentsaredesignedtoactonbehalfofusersIhandlingcomplexprocessesthatofteninvolvemultiplestepsIintegrationsIandreal-timedecision-making.TheyoperatewithalevelofautonomyIallowingthemtocompletetaskswithoutconstanthumanintervention.
KeyCharacteristics
oAutonomyandDecision-Making
oInteractionwithExternalSystems
oStateManagementandMemory
oComplexWork?owAutomation
oHuman-AgentCollaboration
UseCaseExamples
oVirtualAssistants
oCustomerSupportBots
oProcessAutomationAgents
oDataAnalysisandReportingAgents
oIntelligentPersonalizationAgents
oSecurityandComplianceAgents
SecurityChallenges
oAgentapplicationsIwiththeirautonomyandaccesstovarioussystemsImustbecarefullysecuredtopreventmisuse.Theyfacesecuritychallengeslike
unauthorizedaccessIincreasedexploitationrisksduetointeractionwithmultiplesystemsIandvulnerabilitiesindecision-makingprocesses.Ifsomeonegains
controlofanautonomousagent,theconsequencescouldbesevere,especiallyincriticalsystems.Ensuringrobustaccesscontrolsandencryptionmethodsto
protectagainstthisisessential.Ensuringdataintegrityandcon?dentialityis
criticalIasagentsoftenhandlesensitiveinformationitisimportanttosecuredataatallstagesIincludingat-restIinmotionIandaccessthroughsecuredAPIs.Theirautonomyalsoposesrisksofunintendedorharmfuldecisionswithoutoversight.RobustauthenticationIencryptionImonitoringIandfail-safemechanismsare
essentialtomitigatethesesecurityrisks.ObservabilityandTraceabilitysolutionsthatmonitortheentirelifecycleoftheAgents(DesignIDevelopmentIDeploymentIandVisibilityondecision-making)mustbeconsideredtoensurereal-time
correctionsusingahumans-in-the-loopprocesscanbeenforced.
Version1.07of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
LLMPlug-ins,Extensions
Plug-insareextensionsoradd-onsthatintegrateLLMsintoexistingapplicationsorplatformsIenablingthemtoprovideenhancedornewfunctionalities.Plug-instypicallyserveasabridgebetweentheLLMandtheapplicationIfacilitatingseamlessintegrationIsuchasaddingalanguagemodeltoawordprocessorforgrammarcorrectionorintegratingwithcustomerrelationshipmanagement(CRM)systemsforautomatedemailresponses.
Whileitcanbesometimesdi代culttodrawthelinebetweenAgentsandplug-insorextensionswhichareoftencomponentsoflargerapplicationsIonemeasureisthewayitisdeployedandused.ForexampleIaplug-inwouldbeapre-builtagendesignedforreusethatyoucallexplicitlyIthroughanAPIIoraspartofanLLMspluginorextensionframeworkvs.customcoderunninginthebackgroundonaperiodicbasis.
KeyCharacteristics
oModularityandFlexibility
oSeamlessIntegration
oTaskSpeci?cFocus
oEaseofDeploymentandUse
oRapidUpdatesandMaintenance
UseCaseExamples
oContentGenerationTools
oTextSummarizationApplications
SecurityChallenges
oPluginsinteractingwithsensitivedataorcriticalsystemsmustbecarefullyvettedforsecurityvulnerabilities.Poorlydesignedormaliciouspluginscancausedatabreachesorunauthorizedaccess.LLMpluginsfacechallengeslikecompatibilityissuesIwhereupdatescanintroducevulnerabilitiesIandintegrationwithsensitivesystemsincreasestheriskofdataleaks.EnsuringsecureAPIinteractionsIregularupdatesIandrobustaccesscontrolsiscrucial.Resource-intensivepluginsmaydegradeperformanceIriskingexploitation.
o
Version1.08of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
ComplexApplications
ComplexapplicationsaresophisticatedsoftwaresystemsthatdeeplyintegrateLargeLanguageModels(LLMs)asacentralcomponenttoprovideadvancedfunctionalitiesandsolutions.TheseapplicationsarecharacterizedbytheircomprehensivescopeIscalabilityIandtheintegrationofmultipletechnologiesandcomponents.TheyaretypicallydesignedtosolveintricateproblemsIofteninenterpriseenvironmentsIandrequireextensivedevelopmentIengineeringIandongoingmaintenanceefforts.
KeyCharacteristics
oMulti-componentarchitecturesaredesignedtoprocesspromptsfromothernon-humansystems.
oOftenusemultipleintegrationsIincludingothermodels.
oMulti-ComponentArchitecture
oScalabilityandPerformance
oAdvancedFeaturesandCustomization
oEnd-to-EndWork?owAutomation
UseCaseExamples
oLegalDocumentAnalysisPlatforms
oAutomatedFinancialReportingSystems
oCustomerServicePlatforms
oHealthcareDiagnostics
SecurityChallenges
oComplexLLMapplicationsfacemajorsecuritychallengesduetotheirintegrationwithmultiplesystemsandextensivedatahandling.TheseincludeAPIvulnerabilitiesIdatabreachesIandadversarialattacks.Thecomplexityincreasestheriskofmiscon?gurationsIleadingtounauthorizedaccessordataleaks.Managingcomplianceacrosscomponentsisalsodi代cult.RobustencryptionIaccesscontrolsIregularsecurityauditsIandcomprehensivemonitoringareessentialtoprotecttheseapplicationsfromsophisticatedthreatsandensuredatasecurity.
Version1.09of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
LLMDevelopmentandConsumptionModels
Oneofthe?rstconsiderationsforanorganizationisdecidingupontheapproachtoleveragingLLMcapabilitiesbasedonthetypeofapplicationandgoalsfortheproject.TodayIdevelopershaveachoiceoftwoprimarydeploymentmodelswhenimplementingLLM-basedapplicationsandsystems.
CreateaNewModel:ThetrainingprocessforcustomLLMsisintensiveIofteninvolvingdomain-speci?cdatasetsandextensive?ne-tuningtoachievedesiredperformancelevels.ThisapproachismoreakintoMLOpsbuildingMLmodelsfromthegroundupIwithdetaileddataanalysisIcollectionformattingIcleaningIandlabeling.Oneofthebene?tsofthisapproachisthatyouknowthelineageandsourceofthedatathemodelisbuiltonandcanattestdirectlytoitsvalidityand?t.HoweverIamajordownsideistheresourcesIcostIandexpertisenecessarytobuildItrainIandverifyamodelthatmeetstheprojectobjectives.CustomLLMsprovidetailoredsolutionsoptimizedforspeci?ctasksanddomainsIofferinghigheraccuracyandalignmentwithanorganization'sspeci?cneeds.
ConsumeandCustomizeExistingModels:Pre-trained(foundation)modelsIwhetherself-hostedorofferedasaserviceIsuchaswithChatGPTIBertandothersontheotherhandprovideamoreaccessibleentrypointfororganizations.ThesemodelscanbequicklydeployedviaAPIsIallowingforrapidsolutionvalidationandintegrationintoexistingsystems.TheLLMOpsprocessinthisscenarioemphasizescustomizationthrough?ne-tuningwithspeci?cdatasetsIensuringthemodelmeetstheapplication'suniquerequirementsIfollowedbyrobustdeploymentandmonitoringtomaintainperformanceandsecurity.
Version1.010of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
LLMOpsandLLMSecOpsDefined
HavingacommonviewoftypicalLLMapplicationarchitecturesIincludingagentsImodelsILLMsIandtheMLapplicationstackIiscrucialforde?ningandaligningtheapplicationstackandsecuritymodel.
(?gure:LLMOpsrelatedOperationsProcessforDataIMachineLearningandDevOps)
AQuickOPsPrimer-FoundationforLLMOPs
DevOpsIwhichemphasizescollaborationIautomationIandcontinuousintegrationanddeployment(CI/CD)Ihaslaidthegroundworkfore代cientsoftwaredevelopmentandoperations.BystreamliningthesoftwaredevelopmentlifecycleIDevOpsenablesrapidandreliabledeliveryofapplicationsIfosteringacultureofcollaborationbetweendevelopmentandoperationsteams.
DataOpsbuildsonDevOpsIwheredatapipelinesaremanagedwithsimilarautomationIversioncontrolIandcontinuousmonitoringIensuringdataqualityandcomplianceacrossthedatalifecycle.MLOpsalsoextendstheDevOpsprinciplestomachinelearningIfocusingontheuniquechallengesofmodeldevelopmentItrainingIdeploymentIandmonitoring.UtilizingDevOpsasafoundationensuresthatbothDataOpsandMLOpsinheritarobustinfrastructurethatprioritizese代ciencyIscalabilityIsecurityIandfasterinnovationindata-drivenandmachinelearningapplications.
MLOpsandDataOpsarefoundationaltoLLMOpsbecausetheyestablishthecriticalprocessesandinfrastructureneededformanagingthelifecycleoflargelanguagemodels(LLMs).DataOpsensuresthatdatapipelinesaree代cientlymanagedIfromdatacollectionandpreparationtostorageandretrievalIprovidinghigh-qualityIconsistentIandsecuredatathatLLMsrelyonfortrainingandinference.MLOpsextendstheseprinciplesbyautomatingandorchestratingthemachinelearninglifecycleIincludingmodeldevelopmentItrainingIdeploymentIandmonitoring.
Version1.011of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
LLMOpsandMLOpsIwhilerootedinthesamefoundationalprinciplesoflifecyclemanagementIdivergesigni?cantlyintheirfocusandrequirementsduetothespeci?cdemandsoflargelanguagemodels(LLMs).LLMOpsencompassesthecomplexitiesoftrainingIdeployingIandmanagingLLMsIwhichrequiresubstantialcomputationalresourcesandsophisticatedhandling.LLMOpsensurethatLLMsaree代cientlyintegratedintoproductionenvironmentsImonitoredforperformanceandbiasesIandupdatedasneededtomaintaintheireffectiveness.ThisholisticapproachensuresthatthedeploymentandoperationofLLMsarestreamlinedIscalableIandsecureIincludingconsiderationsfordatavalidationandprovenancetoensurethatthedatausedfortrainingand?ne-tuningLLMsistrustworthyandfreefromtampering.Thiscanincludetechniquesfordataauditingandveri?cation.
LLMOPsLifeCycleStages-FoundationforLLMDevSecOPs
AsmentionedearlierinthisdocumentItoalignsecuritysolutionsforLLMapplicationsforoursolutionguideweareusingtheLLMOpsprocesstode?nethesolutioncategoriessothattheyalignwiththechallengesdevelopersarefacingindevelopinganddeployingLLM-basedapplications.
(?gure:CombinedLLMCustomandLLMPre-TrainedImage)
TheLLMOpsprocessesdiffersigni?cantlybetweenusingpre-trainedLLMmodelsforapplicationdevelopmentandcreatingcustomLLMmodelsfromscratchusingopen-sourceandcustomdatasetsIwhichinheritmorefromMLOpspracticeswithsomeadditions.We?rstneedtode?nethestagesIthetypicaldevelopertasksIandthesecuritystepsateachstageofthelifecycle.
Version1.012of34
|GenAI,LLMSecOpsandSecuritySolutionLandscape
(?gure:LLMopsPre-TrainedProcessandSteps)
Thesephaseswehavede?nedinclude:Scope/PlanIModelFine-Tuning/DataAugmentationITest/EvaluateIReleaseIDeployIOperateIMonitorIandGovern.OfcourseIthisisaniterativeapproachIwhetheryouarepracticingwaterfallIagileIorahybridapproacheachofthesestepscanbeleveraged.
Scoping/Planning
Thefocusisonde?ningtheapplication'sgoalsIunderstandingthespeci?cneedstheLLMwilladdressIanddetermininghowthepre-trainedmodelwillbeintegratedintothelargersystem.ThisstageinvolvesgatheringrequirementsIassessingpotentialethicalandcomplianceconsiderationsIandsettingclearobjectivesforperformanceIscalabilityIanduserinteraction.TheoutcomeisadetailedprojectplanthatoutlinesthescopeIresourcesIandtimelinesneededtoimplementtheLLM-poweredapplicationsuccessfully.
TypicalActivities:
LLMOps
LLMSecOps
●
DataSuitability
●
AccessControlandAuthentication
●
ModelSelection
Planning
●
Requirem
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025山東省建筑安全員B證考試題庫附答案
- 紋眉課程設(shè)計
- 維語花卉種植課程設(shè)計
- 電磁測量課程設(shè)計
- 統(tǒng)計模型與預(yù)測課程設(shè)計
- 2024年建筑安全員C證考試題庫
- 研學(xué)課程設(shè)計展示模板
- 鹽酸生產(chǎn)工藝考核試卷
- 電子測量技術(shù)在城市安防中的應(yīng)用考核試卷
- 棉麻行業(yè)品牌價值提升策略考核試卷
- GB/T 19963.1-2021風(fēng)電場接入電力系統(tǒng)技術(shù)規(guī)定第1部分:陸上風(fēng)電
- 鋼結(jié)構(gòu)設(shè)計計算書
- 人民法院應(yīng)急預(yù)案范文(通用5篇)
- 小母雞回來了-課件
- 甲基丙烯酸甲酯穩(wěn)定的 α-甲基丙烯酸甲酯MSDS危險化學(xué)品安全技術(shù)說明書
- 中醫(yī)內(nèi)科學(xué)厥證
- 介入室質(zhì)量考評標(biāo)準(zhǔn)
- 西南交通大學(xué)-畢業(yè)答辯PPT模板
- 心臟功能的超聲心動圖評估-課件
- 幼兒園防沖撞隔離安全設(shè)施整改報告
- 新能源場站電氣誤操作事故處置方案
評論
0/150
提交評論