PVT集電極技術(shù)、應(yīng)用和市場的基本概念_第1頁
PVT集電極技術(shù)、應(yīng)用和市場的基本概念_第2頁
PVT集電極技術(shù)、應(yīng)用和市場的基本概念_第3頁
PVT集電極技術(shù)、應(yīng)用和市場的基本概念_第4頁
PVT集電極技術(shù)、應(yīng)用和市場的基本概念_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

BasicconceptsofPVTcollector

technologies,

applicationsandmarkets

IEASHCTASK60|PVTSYSTEMS

BasicconceptsofPVT

collectortechnologies,

applicationsandmarkets

SHCTask60/ReportD5

Authors:ManuelL?mmle,FraunhoferISE,Germany

MaríaHerrando,UniversityofZaragoza,SpainGlenRyan,Sunovate,Australia

Contributors:LaetitiaBrottier,DualSun,France;MatteoChiappa,Solink,Italy;CorrydeKeizer,TNO,

Netherlands;AlejandrodelAmo,Abora,Spain;AlexanderFriedrich,3FSolar,Austria;AntonioGagliano,

UniversitàdiCatania,Italy;JoaoGomes,Solarus,Sweden;AndreasH?berle,HSRHochschulefürTechnikRapperswil,Switzerland;EricHawkins,Speedflex,UK;DannyJonas,Universit?tdesSaarlandes,Germany;KorbinianKramer,FraunhoferISE,Germany;UlrichLeibfried,Consolar,Germany;AlexanderMellor,NakedEnergy,UK;IlijaNasov,CamelSolar,Macedonia;ThomasNoll,easy-tnt,Germany;MarcoPelligrini,

UniversityofBologna,Italy;FernandoPerez,Abora,Spain;MarkusPr?ll,ZAEBayerne.V.,Germany;NielsRadisch,Ramboll,Denmark;DavidSauter,ZHAW,Switzerland;IonnaisSifnaios,DTU,Denmark;DanjanaTheis,HTWSaar,Germany;DanielZenh?usern,SPF,Switzerland

Date:May1st,2020

ReportnumberD5DOI:10.18777/ieashc-task60-2020-0002

Coverphoto:PVTcollectorsattheNewTownHallFreiburg?ManuelL?mmle/FraunhoferISE

ThecontentsofthisreportdonotnecessarilyreflecttheviewpointsorpoliciesoftheInternationalEnergyAgency(IEA)oritsmembercountries,theIEASolarHeatingandCoolingTechnologyCollaboration

Programme(SHCTCP)membersortheparticipatingresearchers.

IEASolarHeatingandCoolingTechnologyCollaborationProgramme(IEASHC)

TheSolarHeatingandCoolingTechnologyCollaborationProgrammewasfoundedin1977asoneofthefirst

multilateraltechnologyinitiatives("ImplementingAgreements")oftheInternationalEnergyAgency.Itsmissionis

“Toenhancecollectiveknowledgeandapplicationofsolarheatingandcoolingthroughinternationalcollaborationtoreachthegoalsetinthevisionofsolarthermalenergymeeting50%oflowtemperatureheatingandcooling

demandby2050.”

ThemembersoftheIEASHCcollaborateonprojects(referredtoasTasks)inthefieldofresearch,development,demonstration(RD&D),andtestmethodsforsolarthermalenergyandsolarbuildings.

ResearchtopicsandtheassociatedTasksinparenthesisinclude:

□SolarSpaceHeatingandWaterHeating(Tasks14,19,26,44,54)

□SolarCooling(Tasks25,38,48,53)

□SolarHeatforIndustrialorAgriculturalProcesses(Tasks29,33,49,62,64)

□SolarDistrictHeating(Tasks7,45,55)

□SolarBuildings/Architecture/UrbanPlanning(Tasks8,11,12,13,20,22,23,28,37,40,41,47,51,52,56,59,63)

□SolarThermal&PV(Tasks16,35,60)

□Daylighting/Lighting(Tasks21,31,50,61)

□Materials/ComponentsforSolarHeatingandCooling(Tasks2,3,6,10,18,27,39)

□Standards,Certification,andTestMethods(Tasks14,24,34,43,57)

□ResourceAssessment(Tasks1,4,5,9,17,36,46)

□StorageofSolarHeat(Tasks7,32,42,58)

InadditiontoourTaskwork,otheractivitiesoftheIEASHCincludeour:

InternationalConferenceonSolarHeatingandCoolingforBuildingsandIndustry

SHCSolarAcademy

SolarHeatWorldwideannualstaticsreport

Collaborationwithsolarthermaltradeassociations

CountryMembers

Australia

France

SouthAfrica

Austria

Germany

Spain

Belgium

Italy

Sweden

Canada

Netherlands

Switzerland

China

Norway

Turkey

Denmark

Portugal

UnitedKingdom

EuropeanCommission

Slovakia

SponsorMembers

EuropeanCopperInstitute

ECREEE

InternationalSolarEnergySociety

PCREEE

CCREEE

RCREEE

EACREEE

SACREEE

FormoreinformationontheIEASHCwork,includingmanyfreepublications,pleasevisit

Preface

TheaimofthisreportistoprovideasummaryofthecurrentstateofthePVTcollectortechnologies,applications,andmarkets.

ThecontentsofthisreporthavebeenusedtoupdateandenhanceaWikipediaarticleonPVTinordertobetterinformonPVTawideaudience.Therefore,themainstructureandsomeliteralfragmentsofthecurrentWikipediaarereused.InsteadofcitingtheliteralfragmentsoftheoldWikipediaarticleinthemaintext,weincludedtheoldarticleinappendixandmarkedthefragmentsthatwerereused.

Contents

Preface iii

Contents iv

1PVTcollectorsandtheirrangeofoperation 1

1.1Introduction 1

1.2PVTmarkets 2

1.3PVTcollectortechnologies 2

1.3.1ClassificationofPVTcollectors 3

1.3.2PVTliquidcollector 4

1.3.3PVTaircollector 4

1.3.4UncoveredPVTcollector(WISC) 5

1.3.5CoveredPVTcollector 5

1.3.6ConcentratingPVTcollector(CPVT) 5

1.4PVTapplicationsbytemperaturerange 6

2AreviewofPVTapplicationsandsystems 8

2.1Solarheatingsystems 8

2.1.1Processheat 8

2.1.2Domestichotwaterheating 8

2.1.3Spaceheating 8

2.1.4Swimmingpool 9

2.1.5Heatpumpsource 9

2.2Solarcoolingandsolarcombinedcoolingheatingandpowersystems 9

2.3Solarindustrialprocesses 10

2.3.1Solarwaterdesalinationandsolarstills 10

2.3.2Agro-Industrialprocesses 10

2.4References 10

3AssessmentofthemarketpotentialofPVTcollectors 14

Appendix1-ExpertsurveyontemperaturerangesforPVTcollectortechnologiesandapplications 15

Appendix2-MarkedversionoftheoriginalWikipediaarticlefrom16.03.2019 18

3.1Introduction 18

3.2Contents 19

3.3PV/Tsystemengineering 19

3.4Systemtypes 19

3.4.1PV/Tliquidcollector 19

3.4.2PV/Taircollector 19

3.4.3PV/Tconcentrator(CPVT) 20

3.5Seealso 20

3.6References 20

Page1

BasicconceptsofPVTcollectortechnologies,applicationsandmarkets

1PVTcollectorsandtheirrangeofoperation

1.1Introduction

Photovoltaicthermalcollectors,typicallyabbreviatedasPVTcollectorsandalsoknownashybridsolarcollectors,hybridphotovoltaicthermalsolarcollectors,PV/Tcollectorsorsolarcogenerationsystems,arepowergenerationtechnologiesthatconvertsolarradiationintousablethermalandelectricalenergy.PVTcollectorscombinephotovoltaicsolarcells,whichconvertsunlightintoelectricity,withasolarthermalcollector,whichtransferstheotherwiseunusedexcessheatfromthePVmoduletoaheattransferfluid.Bycombiningelectricityandheatgenerationwithinthesamecomponent,thesetechnologiescanreachahigheroverallefficiencythansolarphotovoltaic(PV)orsolarthermalalone.1

SignificantresearchhasgoneintodevelopingadiverserangeofPVTtechnologiessincethe1970s.2ThedifferentPVTcollectortechnologiesdiffersubstantiallyintheircollectordesignandheattransferfluidandaddressdifferentapplicationsrangingfromlowtemperatureheatingandcoolinguptohightemperatureheatabove100°C.3

Figure1.14:SchematiccrosssectionofaWISC(Windandinfraredsensitivecollector)PVTcollectorwithsheet-and-tubetypeheatexchangerandrearinsulation:

1-PVmodulecoverglass(e.g.anti-reflective)

2-Encapsulant(e.g.EVA)

3-SolarPVcells

4-Encapsulant(e.g.EVA)

5-Backsheet(e.g.PVF)

6-Heatexchanger(e.g.aluminum,copperorpolymers)

7-Thermalinsulation(e.g.mineralwool),notalwayspresentforWISCcollectors.

1Zenh?usern,Daniel,EvelynBamberger,andAleksisBaggenstos.2017.?PVTWrap-Up:EnergySystemswithPhotovoltaic-ThermalSolarCollectors?.Rapperswil,Switzerland:publishedbyEnergieSchweiz.

http://www.spf.ch/fileadmin/daten/publ/PVT_WrapUp_Final_EN.pdf

2Chow,T.T.(2010)."Areviewonphotovoltaic/thermalhybridsolartechnology".AppliedEnergy.87(2):365-379.doi:10.1016/j.apenergy.2009.06.037.

3Zondag,H.A.;Bakker,M.;vanHelden,W.G.J.(2006):PVTRoadmap-AEuropeanguideforthedevelopmentandmarketintroductionofPV-Thermaltechnology.

4ImagebyManuelL?mmle-Ownwork,CCBY-SA4.0,

/w/index.php?curid=88267419

Page2

1.2PVTmarkets

PVTcollectorsgeneratesolarheatandelectricitybasicallyfreeofdirectCO2emissionsandarethereforeregardedasapromisingtechnologytosupplyrenewableelectricityandheatand/orcoldtobuildingsandindustrialprocesses.

Heatisthelargestenergyend-use.In2015,theprovisionofheatingforitsuseinbuildings,industrialpurposesandotherapplicationsaccountedforaround52%(205EJ)ofthetotalenergyconsumed.5Ofthis,overhalfwasusedintheindustryandaround46%inthebuildingsector.While72%oftheheatwasprovidedbythedirectcombustionoffossilfuels,only7%ofwasfrommodernrenewablessuchassolarthermal,biofuelorgeothermal.6Thelowgradeheatmarketupto150°Cisestimatedtobe26.8%oftheworldwidefinalenergydemand,whichiscurrentlyservicedbyfossilfuels(gas,oil,andcoal),electricityandrenewableheat.Thisisthesumofindustrydemand7.1%(25.5EJ)7andbuildingdemand19.7%(49.0EJresidentialand13.6EJcommercial)8.

Theelectricitydemandinbuildingsandindustryisexpectedtogrowfurtherduetoongoingelectrificationandsectorcoupling.9Forasignificantreductionofcarbonemissions,itisessentialthatthemajorshareofelectricityissourcedfromrenewableenergysources,suchaswind,solar,biomassandwater.

Themarketforrenewableheatandelectricityisthereforevast,illustratingthemarketpotentialofPVTcollectors.

Thereport“SolarHeatWorldwide”assessedtheglobalmarketofPVTcollectorsin2018.Accordingtotheauthors,thetotalareaofinstalledcollectorsamountedto1.08millionsquaremeters.Uncoveredwatercollectorshadthelargestmarketshare(57%),followedbyaircollectors(41%)andcoveredwatercollectors(2%).ThecountrywiththelargestinstalledcapacitywasFrance(41%),followedbyKorea(26%),China(12%)andGermany(10%).10

1.3PVTcollectortechnologies

PVTcollectorscombinethegenerationofsolarelectricityandheatinasinglecomponent,andthusachieveahigheroverallefficiencyandbetterutilizationofthesolarspectrumthanconventionalPVmodules.

Photovoltaiccellstypicallyreachanelectricalefficiencybetween15%and20%,whilethelargestshareofthesolarspectrum(65%-70%)isconvertedintoheat,increasingthetemperatureofPVmodulesasillustratedinFigure2.PVTcollectors,onthecontrary,areengineeredtotransferheatfromthePVcellstoafluid.Inthisway,thisexcessheatismadeusefulandcanbeutilizedtoheatwaterorasalowtemperaturesourceforheatpumps,forexample.Thus,PVTcollectorsmakebetteruseofthesolarspectrum.1

Byco-generatingsolarelectricityandheatinasinglecomponent,PVTcollectorsincreasethecombinedefficiencyandyieldanoptimizedutilizationofavailablespace.Especiallyindenselypopulatedurbanareas,PVTcollectorsareconsideredapromisingtechnologyforincreasingtheusageofvaluableroofandfacadespace.

Mostphotovoltaiccells(e.g.siliconbased)sufferfromadropinefficiencywithincreasedcelltemperatures.EachKelvinofincreasedcelltemperaturereducestheefficiencyby0.2–0.5%.3RemovingheatfromthePVcellscan

5Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure1,

/download/direct/1030

6Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure2,

/download/direct/1030

7Philibert,Cedric2017,IEARenewableEnergyforIndustryFromgreenenergytogreenmaterialsandfuels,Figure3,

/download/direct/1025?fileName=Insights_series_2017_Renewable_Energy_for_Industry.pdf

8Dianaürge-Vorsatz,Heatingandcoolingenergytrendsanddriversinbuildings,Figure3,

/10.1016/j.rser.2014.08.039

9IRENA(2019):GlobalEnergyTransformation:ARoadmapto2050(2019Edition).InternationalRenewableEnergyAgency,AbuDhabi.

/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf

.

10Weiss,Werner;Sp?rk-Dür,Monika(2019):SolarHeatWorldwide-GlobalMarketDevelopmentandTrendsin2018-

DetailedmarketFigures2017,

/Data/Sites/1/publications/Solar-Heat-Worldwide-2019.pdf

.

Page3

BasicconceptsofPVTcollectortechnologies,applicationsandmarkets

thereforelowertheirtemperatureandthusincreasethecells’efficiency.ImprovedPVcelllifetimesareanotherbenefitofloweroperationtemperatures.

ThefunctionandenergeticbenefitofaPVTcollectorcanbedescribedcomprehensivelybyindicatingthe

electricalandthermalgainsinasolarspectrum(Figure1.2).Itisalsoforthisreason,thatIEASHCTask60usesthesolarspectrumaspartofitslogo.

Figure1.2:UtilizationoftheelectromagneticsolarspectrumbyaPVTcollector.11

Figure1.2isbasedontheoriginaldiagrambyDupeyrat(2011)12,whichwasupdatedwithrecentefficiencydataanddetailedopticalmeasurements(compareL?mmle(2018)13):

?SolarirradiancerepresentstheglobalAM1.5spectrumaccordingtoASTMG173-03(2012)14withanoverallirradiancedensityofG=1000W/m2.

?TheopticallossesarecalculatedbasedonmeasuredreflectanceandtransmittancespectraofaPVmodulewithp-Sisolarcells,solarglassandwithoutanti-reflectivecoating.TheopticalmeasurementswereconductedatFraunhoferISEwithaspectrometerusinganUlbrichtsphere.

?Theelectricitygainsarecalculatedbasedonthemeasurementsofthespectralresponseofac-SisolarcellwithanelectricalefficiencyofηSTC=15%.

?Theheatgainsarecalculatedbasedontheassumptionofathermalefficiencyofηth,0=61%,astypicallyfoundinunglazedorglazedPVTcollectorswithattheoperatingconditionsofTfluid,mean=Tambient.

?Heatlossesaccountfortheremainderofthesolarspectrum,asheatlosses,anditsspectraldistribution,cannotbemeasureddirectly.

Accordingly,thesolarirradiancerepresents100%oftheAM1.5spectrum,opticallossesaccountfor9%,heatlossesfor15%,heatgainsfor61%,andelectricitygainsfor15%.

1.3.1ClassificationofPVTcollectors

11ImagebyManuelL?mmle-Ownwork,CCBY-SA4.0,

/w/index.php?curid=87526248

12Dupeyrat,Patrick(2011):ExperimentaldevelopmentandsimulationinvestigationofaPhotovoltaic-Thermalhybridsolarcollector.INSAdeLyon,France.L’InstitutNationaldesSciencesAppliquéesdeLyon.

13L?mmle,Manuel(2018):ThermalmanagementofPVTcollectors-developmentandmodellingofhighlyefficientPVTcollectorswithlow-emissivitycoatingsandoverheatingprotection.In:PhDthesis,FraunhoferISE,INATECHAlbert-Ludwigs-Universit?tFreiburg.DOI:10.6094/UNIFR/16446.

14ASTMG173-03(2012)-StandardTablesforReferenceSolarSpectralIrradiances:DirectNormalandHemisphericalon37°TiltedSurface.

/solar//spectra/am1.5/

Page4

ThereareamultitudeoftechnicalpossibilitiestocombinePVcellsandsolarthermalcollectors.AnumberofPVTcollectorsareavailableascommercialproducts,whichcanbedividedintothefollowingcategoriesaccordingtotheirbasicdesignandheattransferfluid:

?PVTliquidcollector

?PVTaircollector

Inadditiontotheclassificationbyheattransferfluid,PVTcollectorscanalsobecategorizedaccordingtothepresenceofasecondaryglazingtoreduceheatlossesandthepresenceofadevicetoconcentratesolarirradiation.

?UncoveredPVTcollector(WISCPVT)

?CoveredPVTcollector

?ConcentratingPVTcollector(CPVT)

Moreover,PVTcollectorscanbeclassifiedaccordingtotheirdesign,suchascelltechnology,typeoffluid,heatexchangermaterialandgeometry,typeofcontactbetweenfluidandPVmodule,fixationofheatexchanger,orlevelofbuildingintegration(buildingintegratedPVT

(BIPVT)collectors).1,

15

ThedesignandtypeofPVTcollectorsalwaysimpliesacertainadaptiontooperatingtemperatures,applications,andgivingprioritytoeitherheatorelectricitygeneration.Forinstance,operatingthePVTcollectoratlowtemperatureleadstoacoolingeffectofPVcellscomparedtoPVmodulesandthereforeanincreaseofelectricalpower.However,theheatalsohastobeutilizedatlowtemperatures.

ThemaximumoperatingtemperaturesformostPVmodulesarelimitedtolessthanthemaximumcertifiedoperationtemperatures(typically85°C).Nevertheless,twoormoreunitsofthermalenergyaregeneratedforeachunitofelectricalenergy,dependingoncellefficiencyandsystemdesign.

1.3.2PVTliquidcollector

Thebasicwater-cooleddesignuseschannelstodirectfluidflowusingpipingattacheddirectlyorindirectlytothebackofaPVmodule.Inastandardfluid-basedsystem,aworkingfluid,typicallywater,glycolormineraloil,circulatesintheheatexchangerbehindthePVcells.TheheatfromthePVcellsisconductedthroughthemetalandistransferredtotheworkingfluid(presumingthattheworkingfluidiscoolerthantheoperatingtemperatureofthecells).

1.3.3PVTaircollector

Thebasicair-cooleddesignuseseitherahollow,conductivehousingtomountthephotovoltaicpanelsoracontrolledflowofairtotherearfaceofthePVpanel.PVTaircollectorseitherdrawinfreshoutsideairoruseairasacirculatingheattransfermediuminaclosedloop.TheheattransferpropertiesofairarelowerthanthatoftypicallyusedliquidsandthereforerequiresaproportionallyhighermassflowratethananequivalentPVTliquidcollector.Theadvantageisthattheinfrastructurerequiredhaslowercostandcomplexity.

TheheatedairiscirculatedintoabuildingHVACsystemtodeliverthermalenergy.Excessheatgeneratedcanbesimplyventedtotheatmosphere.SomeversionsofthePVTaircollectorcanbeoperatedinawaytocoolthePVpanelstogeneratemoreelectricityandassistwithreducingthermaleffectsonlifetimeperformancedegradation.

AnumberofdifferentconfigurationsofPVTaircollectorsexist,whichvaryinengineeringsophistication.PVTaircollectorconfigurationsrangefromabasicenclosedshallowmetalboxwithanintakeandexhaustuptooptimizedheattransfersurfacesthatachieveuniformpanelheattransferacrossawiderangeofprocessandambientconditions.

PVTaircollectorscanbecarriedoutasuncoveredorcovereddesigns

.1

15L.Brottier(2018).Optimisationbiénergied’unpanneausolairemultifonctionnel:ducapteurauxinstallationsinsitu.Mécanique[physics.med-ph].UniversitéParis-Saclay,2019

.https://tel.archives-ouvertes.fr/tel-02133891

Page5

BasicconceptsofPVTcollectortechnologies,applicationsandmarkets

1.3.4UncoveredPVTcollector(WISC)

UncoveredPVTcollectors,alsodenotedasunglazedorwindand/orinfraredsensitivePVTcollectors(WISC),typicallycompriseofaPVmodulewithaheatexchangerstructureattachedtothebackofthePVmodule.WhilemostPVTcollectorsareprefabricatedunits,someproductsareofferedasheatexchangerstoberetrofittedtooff-the-shelfPVmodules.Inbothcases,agoodandlongtimedurablethermalcontactwithahighheattransfercoefficientbetweenthePVcellsandthefluidisessential.16

TherearsideoftheuncoveredPVTcollectorcanbeequippedwiththermalinsulation(e.g.mineralwoolorfoam)toreduceheatlossesoftheheatedfluid.UninsulatedPVTcollectorsarebeneficialforoperationnearandbelowambienttemperatures.ParticularlyuncoveredPVTcollectorswithincreasedheattransfertoambientairareasuitableheatsourceforheatpumpsystems.Whenthetemperatureintheheatpump’ssourceislowerthantheambient,thefluidcanbeheateduptoambienttemperatureeveninperiodswithoutsunshine.

Accordingly,uncoveredPVTcollectorscanbecategorizedinto:

?UncoveredPVTcollectorwithincreasedheattransfertoambientair

?UncoveredPVTcollectorwithoutrearinsulation

?UncoveredPVTcollectorwithrearinsulation

UncoveredPVTcollectorsarealsousedtoproviderenewablecoolingbydissipatingheatviathePVTcollectortotheambientairorbyutilizingtheradiativecoolingeffect.Indoingso,coldairorwaterisharnessed,whichcanbeutilizedforHVACapplications.

1.3.5CoveredPVTcollector

Covered,orglazedPVTcollectors,featureanadditionalglazing,whichenclosesaninsulatingairlayerbetweenthePVmoduleandthesecondaryglazing.Thisreducesheatlossesandincreasesthethermalefficiency.Moreover,coveredPVTcollectorscanreachsignificantlyhighertemperaturesthanPVmodulesoruncoveredPVTcollectors.Theoperatingtemperaturesmostlydependonthetemperatureoftheworkingfluid.Theaveragefluidtemperaturecanbebetween25°Cinswimmingpoolapplicationsto90°Cinsolarcoolingsystems(Figure3).

CoveredPVTcollectorsresembletheformanddesignofconventionalflatplatecollectorsorevacuatedvacuumtubes.Yet,PVcellsinsteadofspectrally-selectiveabsorbercoatingsabsorbtheincidentsolarirradianceandgenerateanelectricalcurrentinadditiontosolarheat.

Theinsulatingcharacteristicsofthefrontcoverincreasethethermalefficiencyandallowforhigheroperatingtemperatures.However,theadditionalopticalinterfacesincreaseopticalreflectionsandthusreducethegeneratedelectricalpower.Anti-reflectivecoatingsonthefrontglazingcanreducetheadditionalopticallosses.17

1.3.6ConcentratingPVTcollector(CPVT)

Aconcentratorsystemhastheadvantagetoreducethephotovoltaic(PV)cellareaneeded.ThereforeitispossibletousemoreexpensiveandefficientPVcells,e.g.multi-junctionphotovoltaiccells.TheconcentrationofsunlightalsoreducestheamountofhotPV-absorberareaandthereforereducesheatlossestotheambient,whichimprovessignificantlytheefficiencyforhigherapplicationtemperatures.

ConcentratorsystemsoftenrequirereliablecontrolsystemstoaccuratelytrackthesunandtoprotectthePVcellsfromdamagingover-temperatureconditions.However,therearealsostationeryPVTcollectortypesthatusenon-imagingreflectors,suchastheCompoundParabolicConcentrator(CPC),anddonothavetotrackthesun.

16Adam,Mario;Kramer,Korbinian;Fritzsche,Ulrich;Hamberger,Stephan(2014):AbschlussberichtPVT-Norm.F?rderkennzeichen01FS12035-?Verbundprojekt:StandardisierungundNormungvonmultifunktionalenPVTSolarkollektoren(PVT-Norm)“.

17Zondag,H.A.(2008):Flat-platePV-Thermalcollectorsandsystems:Areview.In:RenewableandSustainableEnergyReviews12(4),S.891–959.

Page6

Underidealconditions,about75%ofthesun'spowerdirectlyincidentuponsuchsystemscanbegatheredaselectricityandheat.Formoredetails,seethediscussionofCPVTwithinthearticleforconcentratedphotovoltaics.

Alimitationofhigh-concentrator(i.e.HCPVandHCPVT)systemsisthattheymaintaintheirlong-termadvantagesoverconventionalc-Si/mc-Sicollectorsonlyinregionsthatremainconsistentlyfreeofatmosphericaerosolcontaminants(e.g.lightclouds,smog,etc.).Powerproductionisrapidlydegradedbecause1)radiationisreflectedandscatteredoutsideofthesmall(oftenlessthan1°-2°)acceptanceangleofthecollectionoptics,and2)absorptionofspecificcomponentsofthesolarspectrumcausesoneormoreseriesjunctionswithintheMJcellstounderperform.Theshort-termimpactsofsuchpowergenerationirregularitiescanbereducedtosomedegreebyincludingelectricalandthermalstorageinthesystem.

1.4PVTapplicationsbytemperaturerange

TherangeofapplicationsofPVTcollectors,andingeneralsolarthermalcollectors,canbedividedaccordingtotheirtemperaturelevels:18

?lowtemperatureapplicationsupto50°C

?mediumtemperatureapplicationsupto80°C

?hightemperatureapplicationsabove80°C

Lowtemperatureapplicationsincludeheatpumpsystemsandheatingswimmingpoolsorspasupto50°C.PVTcollectorsinheatpumpsystemsacteitheraslowtemperaturesourcefortheheatpumpevaporatororontheloadsidetosupplymediumtemperatureheattoastoragetank.Moreover,regenerationofboreholesandgroundsourceheatexchangersispossible.1UncoveredPVTcollectorswithenhancedair-to-waterheatexchangecanevencomprisetheonlysourceofaheatpumpsystem.IncombinationwithasystemarchitectureallowingtostorecoldproducedwithWISCoraircollectors,alsoairconditioningispossible.

Lowandmediumtemperatureapplicationsforspaceheatinganddomestichotwaterprovisionarefoundinbuildings,withtemperaturesfrom20°Cto80°C.Thetemperaturesofthespecificsystemdependontherequirementsoftheheatsupplysystemfordomestichotwater(e.g.freshwaterstation,temperaturerequirementsforlegionellaprevention)andforspaceheating(e.g.underfloorheating,radiators).Moreover,thePVTcollectorarraycanbedimensionedtocoveronlysmallerfractionsoftheheatdemand(e.g.hotwaterpre-heating),thusreducingoperatingtemperaturesofthePVTcollector.

Processheatincludesadiverserangeofindustrialapplicationswithlowtohightemperaturerequirements(e.g.solarwaterdesalination,solarcooling,orpowergenerationwithconcentratingPVTcollectors).19PVTcollectortechnologiescanbeclusteredaccordingtotheirtemperaturelevelinthesameway:thesuitabilitypertemperaturerangedependsonthePVTcollectordesignandtechnology.Therefore,eachPVTcollectortechnologyfeaturesdifferentoptimaltemperatureranges.

Figure3showstypicaltemperaturerangesofbothPVTapplicationsandcollectortechnologies.20TheoperatingtemperatureofthePVTapplicationsultimatelydefinesthesuitabilityofeachtypeofPVTcollectortechnology.

18KalogirouSA(2014).Solarenergyengineering:processesandsystems.SecondEdition.AcademicPres

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論