版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
BasicconceptsofPVTcollector
technologies,
applicationsandmarkets
IEASHCTASK60|PVTSYSTEMS
BasicconceptsofPVT
collectortechnologies,
applicationsandmarkets
SHCTask60/ReportD5
Authors:ManuelL?mmle,FraunhoferISE,Germany
MaríaHerrando,UniversityofZaragoza,SpainGlenRyan,Sunovate,Australia
Contributors:LaetitiaBrottier,DualSun,France;MatteoChiappa,Solink,Italy;CorrydeKeizer,TNO,
Netherlands;AlejandrodelAmo,Abora,Spain;AlexanderFriedrich,3FSolar,Austria;AntonioGagliano,
UniversitàdiCatania,Italy;JoaoGomes,Solarus,Sweden;AndreasH?berle,HSRHochschulefürTechnikRapperswil,Switzerland;EricHawkins,Speedflex,UK;DannyJonas,Universit?tdesSaarlandes,Germany;KorbinianKramer,FraunhoferISE,Germany;UlrichLeibfried,Consolar,Germany;AlexanderMellor,NakedEnergy,UK;IlijaNasov,CamelSolar,Macedonia;ThomasNoll,easy-tnt,Germany;MarcoPelligrini,
UniversityofBologna,Italy;FernandoPerez,Abora,Spain;MarkusPr?ll,ZAEBayerne.V.,Germany;NielsRadisch,Ramboll,Denmark;DavidSauter,ZHAW,Switzerland;IonnaisSifnaios,DTU,Denmark;DanjanaTheis,HTWSaar,Germany;DanielZenh?usern,SPF,Switzerland
Date:May1st,2020
ReportnumberD5DOI:10.18777/ieashc-task60-2020-0002
Coverphoto:PVTcollectorsattheNewTownHallFreiburg?ManuelL?mmle/FraunhoferISE
ThecontentsofthisreportdonotnecessarilyreflecttheviewpointsorpoliciesoftheInternationalEnergyAgency(IEA)oritsmembercountries,theIEASolarHeatingandCoolingTechnologyCollaboration
Programme(SHCTCP)membersortheparticipatingresearchers.
IEASolarHeatingandCoolingTechnologyCollaborationProgramme(IEASHC)
TheSolarHeatingandCoolingTechnologyCollaborationProgrammewasfoundedin1977asoneofthefirst
multilateraltechnologyinitiatives("ImplementingAgreements")oftheInternationalEnergyAgency.Itsmissionis
“Toenhancecollectiveknowledgeandapplicationofsolarheatingandcoolingthroughinternationalcollaborationtoreachthegoalsetinthevisionofsolarthermalenergymeeting50%oflowtemperatureheatingandcooling
demandby2050.”
ThemembersoftheIEASHCcollaborateonprojects(referredtoasTasks)inthefieldofresearch,development,demonstration(RD&D),andtestmethodsforsolarthermalenergyandsolarbuildings.
ResearchtopicsandtheassociatedTasksinparenthesisinclude:
□SolarSpaceHeatingandWaterHeating(Tasks14,19,26,44,54)
□SolarCooling(Tasks25,38,48,53)
□SolarHeatforIndustrialorAgriculturalProcesses(Tasks29,33,49,62,64)
□SolarDistrictHeating(Tasks7,45,55)
□SolarBuildings/Architecture/UrbanPlanning(Tasks8,11,12,13,20,22,23,28,37,40,41,47,51,52,56,59,63)
□SolarThermal&PV(Tasks16,35,60)
□Daylighting/Lighting(Tasks21,31,50,61)
□Materials/ComponentsforSolarHeatingandCooling(Tasks2,3,6,10,18,27,39)
□Standards,Certification,andTestMethods(Tasks14,24,34,43,57)
□ResourceAssessment(Tasks1,4,5,9,17,36,46)
□StorageofSolarHeat(Tasks7,32,42,58)
InadditiontoourTaskwork,otheractivitiesoftheIEASHCincludeour:
InternationalConferenceonSolarHeatingandCoolingforBuildingsandIndustry
SHCSolarAcademy
SolarHeatWorldwideannualstaticsreport
Collaborationwithsolarthermaltradeassociations
CountryMembers
Australia
France
SouthAfrica
Austria
Germany
Spain
Belgium
Italy
Sweden
Canada
Netherlands
Switzerland
China
Norway
Turkey
Denmark
Portugal
UnitedKingdom
EuropeanCommission
Slovakia
SponsorMembers
EuropeanCopperInstitute
ECREEE
InternationalSolarEnergySociety
PCREEE
CCREEE
RCREEE
EACREEE
SACREEE
FormoreinformationontheIEASHCwork,includingmanyfreepublications,pleasevisit
Preface
TheaimofthisreportistoprovideasummaryofthecurrentstateofthePVTcollectortechnologies,applications,andmarkets.
ThecontentsofthisreporthavebeenusedtoupdateandenhanceaWikipediaarticleonPVTinordertobetterinformonPVTawideaudience.Therefore,themainstructureandsomeliteralfragmentsofthecurrentWikipediaarereused.InsteadofcitingtheliteralfragmentsoftheoldWikipediaarticleinthemaintext,weincludedtheoldarticleinappendixandmarkedthefragmentsthatwerereused.
Contents
Preface iii
Contents iv
1PVTcollectorsandtheirrangeofoperation 1
1.1Introduction 1
1.2PVTmarkets 2
1.3PVTcollectortechnologies 2
1.3.1ClassificationofPVTcollectors 3
1.3.2PVTliquidcollector 4
1.3.3PVTaircollector 4
1.3.4UncoveredPVTcollector(WISC) 5
1.3.5CoveredPVTcollector 5
1.3.6ConcentratingPVTcollector(CPVT) 5
1.4PVTapplicationsbytemperaturerange 6
2AreviewofPVTapplicationsandsystems 8
2.1Solarheatingsystems 8
2.1.1Processheat 8
2.1.2Domestichotwaterheating 8
2.1.3Spaceheating 8
2.1.4Swimmingpool 9
2.1.5Heatpumpsource 9
2.2Solarcoolingandsolarcombinedcoolingheatingandpowersystems 9
2.3Solarindustrialprocesses 10
2.3.1Solarwaterdesalinationandsolarstills 10
2.3.2Agro-Industrialprocesses 10
2.4References 10
3AssessmentofthemarketpotentialofPVTcollectors 14
Appendix1-ExpertsurveyontemperaturerangesforPVTcollectortechnologiesandapplications 15
Appendix2-MarkedversionoftheoriginalWikipediaarticlefrom16.03.2019 18
3.1Introduction 18
3.2Contents 19
3.3PV/Tsystemengineering 19
3.4Systemtypes 19
3.4.1PV/Tliquidcollector 19
3.4.2PV/Taircollector 19
3.4.3PV/Tconcentrator(CPVT) 20
3.5Seealso 20
3.6References 20
Page1
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
1PVTcollectorsandtheirrangeofoperation
1.1Introduction
Photovoltaicthermalcollectors,typicallyabbreviatedasPVTcollectorsandalsoknownashybridsolarcollectors,hybridphotovoltaicthermalsolarcollectors,PV/Tcollectorsorsolarcogenerationsystems,arepowergenerationtechnologiesthatconvertsolarradiationintousablethermalandelectricalenergy.PVTcollectorscombinephotovoltaicsolarcells,whichconvertsunlightintoelectricity,withasolarthermalcollector,whichtransferstheotherwiseunusedexcessheatfromthePVmoduletoaheattransferfluid.Bycombiningelectricityandheatgenerationwithinthesamecomponent,thesetechnologiescanreachahigheroverallefficiencythansolarphotovoltaic(PV)orsolarthermalalone.1
SignificantresearchhasgoneintodevelopingadiverserangeofPVTtechnologiessincethe1970s.2ThedifferentPVTcollectortechnologiesdiffersubstantiallyintheircollectordesignandheattransferfluidandaddressdifferentapplicationsrangingfromlowtemperatureheatingandcoolinguptohightemperatureheatabove100°C.3
Figure1.14:SchematiccrosssectionofaWISC(Windandinfraredsensitivecollector)PVTcollectorwithsheet-and-tubetypeheatexchangerandrearinsulation:
1-PVmodulecoverglass(e.g.anti-reflective)
2-Encapsulant(e.g.EVA)
3-SolarPVcells
4-Encapsulant(e.g.EVA)
5-Backsheet(e.g.PVF)
6-Heatexchanger(e.g.aluminum,copperorpolymers)
7-Thermalinsulation(e.g.mineralwool),notalwayspresentforWISCcollectors.
1Zenh?usern,Daniel,EvelynBamberger,andAleksisBaggenstos.2017.?PVTWrap-Up:EnergySystemswithPhotovoltaic-ThermalSolarCollectors?.Rapperswil,Switzerland:publishedbyEnergieSchweiz.
http://www.spf.ch/fileadmin/daten/publ/PVT_WrapUp_Final_EN.pdf
2Chow,T.T.(2010)."Areviewonphotovoltaic/thermalhybridsolartechnology".AppliedEnergy.87(2):365-379.doi:10.1016/j.apenergy.2009.06.037.
3Zondag,H.A.;Bakker,M.;vanHelden,W.G.J.(2006):PVTRoadmap-AEuropeanguideforthedevelopmentandmarketintroductionofPV-Thermaltechnology.
4ImagebyManuelL?mmle-Ownwork,CCBY-SA4.0,
/w/index.php?curid=88267419
Page2
1.2PVTmarkets
PVTcollectorsgeneratesolarheatandelectricitybasicallyfreeofdirectCO2emissionsandarethereforeregardedasapromisingtechnologytosupplyrenewableelectricityandheatand/orcoldtobuildingsandindustrialprocesses.
Heatisthelargestenergyend-use.In2015,theprovisionofheatingforitsuseinbuildings,industrialpurposesandotherapplicationsaccountedforaround52%(205EJ)ofthetotalenergyconsumed.5Ofthis,overhalfwasusedintheindustryandaround46%inthebuildingsector.While72%oftheheatwasprovidedbythedirectcombustionoffossilfuels,only7%ofwasfrommodernrenewablessuchassolarthermal,biofuelorgeothermal.6Thelowgradeheatmarketupto150°Cisestimatedtobe26.8%oftheworldwidefinalenergydemand,whichiscurrentlyservicedbyfossilfuels(gas,oil,andcoal),electricityandrenewableheat.Thisisthesumofindustrydemand7.1%(25.5EJ)7andbuildingdemand19.7%(49.0EJresidentialand13.6EJcommercial)8.
Theelectricitydemandinbuildingsandindustryisexpectedtogrowfurtherduetoongoingelectrificationandsectorcoupling.9Forasignificantreductionofcarbonemissions,itisessentialthatthemajorshareofelectricityissourcedfromrenewableenergysources,suchaswind,solar,biomassandwater.
Themarketforrenewableheatandelectricityisthereforevast,illustratingthemarketpotentialofPVTcollectors.
Thereport“SolarHeatWorldwide”assessedtheglobalmarketofPVTcollectorsin2018.Accordingtotheauthors,thetotalareaofinstalledcollectorsamountedto1.08millionsquaremeters.Uncoveredwatercollectorshadthelargestmarketshare(57%),followedbyaircollectors(41%)andcoveredwatercollectors(2%).ThecountrywiththelargestinstalledcapacitywasFrance(41%),followedbyKorea(26%),China(12%)andGermany(10%).10
1.3PVTcollectortechnologies
PVTcollectorscombinethegenerationofsolarelectricityandheatinasinglecomponent,andthusachieveahigheroverallefficiencyandbetterutilizationofthesolarspectrumthanconventionalPVmodules.
Photovoltaiccellstypicallyreachanelectricalefficiencybetween15%and20%,whilethelargestshareofthesolarspectrum(65%-70%)isconvertedintoheat,increasingthetemperatureofPVmodulesasillustratedinFigure2.PVTcollectors,onthecontrary,areengineeredtotransferheatfromthePVcellstoafluid.Inthisway,thisexcessheatismadeusefulandcanbeutilizedtoheatwaterorasalowtemperaturesourceforheatpumps,forexample.Thus,PVTcollectorsmakebetteruseofthesolarspectrum.1
Byco-generatingsolarelectricityandheatinasinglecomponent,PVTcollectorsincreasethecombinedefficiencyandyieldanoptimizedutilizationofavailablespace.Especiallyindenselypopulatedurbanareas,PVTcollectorsareconsideredapromisingtechnologyforincreasingtheusageofvaluableroofandfacadespace.
Mostphotovoltaiccells(e.g.siliconbased)sufferfromadropinefficiencywithincreasedcelltemperatures.EachKelvinofincreasedcelltemperaturereducestheefficiencyby0.2–0.5%.3RemovingheatfromthePVcellscan
5Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure1,
/download/direct/1030
6Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure2,
/download/direct/1030
7Philibert,Cedric2017,IEARenewableEnergyforIndustryFromgreenenergytogreenmaterialsandfuels,Figure3,
/download/direct/1025?fileName=Insights_series_2017_Renewable_Energy_for_Industry.pdf
8Dianaürge-Vorsatz,Heatingandcoolingenergytrendsanddriversinbuildings,Figure3,
/10.1016/j.rser.2014.08.039
9IRENA(2019):GlobalEnergyTransformation:ARoadmapto2050(2019Edition).InternationalRenewableEnergyAgency,AbuDhabi.
/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
.
10Weiss,Werner;Sp?rk-Dür,Monika(2019):SolarHeatWorldwide-GlobalMarketDevelopmentandTrendsin2018-
DetailedmarketFigures2017,
/Data/Sites/1/publications/Solar-Heat-Worldwide-2019.pdf
.
Page3
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
thereforelowertheirtemperatureandthusincreasethecells’efficiency.ImprovedPVcelllifetimesareanotherbenefitofloweroperationtemperatures.
ThefunctionandenergeticbenefitofaPVTcollectorcanbedescribedcomprehensivelybyindicatingthe
electricalandthermalgainsinasolarspectrum(Figure1.2).Itisalsoforthisreason,thatIEASHCTask60usesthesolarspectrumaspartofitslogo.
Figure1.2:UtilizationoftheelectromagneticsolarspectrumbyaPVTcollector.11
Figure1.2isbasedontheoriginaldiagrambyDupeyrat(2011)12,whichwasupdatedwithrecentefficiencydataanddetailedopticalmeasurements(compareL?mmle(2018)13):
?SolarirradiancerepresentstheglobalAM1.5spectrumaccordingtoASTMG173-03(2012)14withanoverallirradiancedensityofG=1000W/m2.
?TheopticallossesarecalculatedbasedonmeasuredreflectanceandtransmittancespectraofaPVmodulewithp-Sisolarcells,solarglassandwithoutanti-reflectivecoating.TheopticalmeasurementswereconductedatFraunhoferISEwithaspectrometerusinganUlbrichtsphere.
?Theelectricitygainsarecalculatedbasedonthemeasurementsofthespectralresponseofac-SisolarcellwithanelectricalefficiencyofηSTC=15%.
?Theheatgainsarecalculatedbasedontheassumptionofathermalefficiencyofηth,0=61%,astypicallyfoundinunglazedorglazedPVTcollectorswithattheoperatingconditionsofTfluid,mean=Tambient.
?Heatlossesaccountfortheremainderofthesolarspectrum,asheatlosses,anditsspectraldistribution,cannotbemeasureddirectly.
Accordingly,thesolarirradiancerepresents100%oftheAM1.5spectrum,opticallossesaccountfor9%,heatlossesfor15%,heatgainsfor61%,andelectricitygainsfor15%.
1.3.1ClassificationofPVTcollectors
11ImagebyManuelL?mmle-Ownwork,CCBY-SA4.0,
/w/index.php?curid=87526248
12Dupeyrat,Patrick(2011):ExperimentaldevelopmentandsimulationinvestigationofaPhotovoltaic-Thermalhybridsolarcollector.INSAdeLyon,France.L’InstitutNationaldesSciencesAppliquéesdeLyon.
13L?mmle,Manuel(2018):ThermalmanagementofPVTcollectors-developmentandmodellingofhighlyefficientPVTcollectorswithlow-emissivitycoatingsandoverheatingprotection.In:PhDthesis,FraunhoferISE,INATECHAlbert-Ludwigs-Universit?tFreiburg.DOI:10.6094/UNIFR/16446.
14ASTMG173-03(2012)-StandardTablesforReferenceSolarSpectralIrradiances:DirectNormalandHemisphericalon37°TiltedSurface.
/solar//spectra/am1.5/
Page4
ThereareamultitudeoftechnicalpossibilitiestocombinePVcellsandsolarthermalcollectors.AnumberofPVTcollectorsareavailableascommercialproducts,whichcanbedividedintothefollowingcategoriesaccordingtotheirbasicdesignandheattransferfluid:
?PVTliquidcollector
?PVTaircollector
Inadditiontotheclassificationbyheattransferfluid,PVTcollectorscanalsobecategorizedaccordingtothepresenceofasecondaryglazingtoreduceheatlossesandthepresenceofadevicetoconcentratesolarirradiation.
?UncoveredPVTcollector(WISCPVT)
?CoveredPVTcollector
?ConcentratingPVTcollector(CPVT)
Moreover,PVTcollectorscanbeclassifiedaccordingtotheirdesign,suchascelltechnology,typeoffluid,heatexchangermaterialandgeometry,typeofcontactbetweenfluidandPVmodule,fixationofheatexchanger,orlevelofbuildingintegration(buildingintegratedPVT
(BIPVT)collectors).1,
15
ThedesignandtypeofPVTcollectorsalwaysimpliesacertainadaptiontooperatingtemperatures,applications,andgivingprioritytoeitherheatorelectricitygeneration.Forinstance,operatingthePVTcollectoratlowtemperatureleadstoacoolingeffectofPVcellscomparedtoPVmodulesandthereforeanincreaseofelectricalpower.However,theheatalsohastobeutilizedatlowtemperatures.
ThemaximumoperatingtemperaturesformostPVmodulesarelimitedtolessthanthemaximumcertifiedoperationtemperatures(typically85°C).Nevertheless,twoormoreunitsofthermalenergyaregeneratedforeachunitofelectricalenergy,dependingoncellefficiencyandsystemdesign.
1.3.2PVTliquidcollector
Thebasicwater-cooleddesignuseschannelstodirectfluidflowusingpipingattacheddirectlyorindirectlytothebackofaPVmodule.Inastandardfluid-basedsystem,aworkingfluid,typicallywater,glycolormineraloil,circulatesintheheatexchangerbehindthePVcells.TheheatfromthePVcellsisconductedthroughthemetalandistransferredtotheworkingfluid(presumingthattheworkingfluidiscoolerthantheoperatingtemperatureofthecells).
1.3.3PVTaircollector
Thebasicair-cooleddesignuseseitherahollow,conductivehousingtomountthephotovoltaicpanelsoracontrolledflowofairtotherearfaceofthePVpanel.PVTaircollectorseitherdrawinfreshoutsideairoruseairasacirculatingheattransfermediuminaclosedloop.TheheattransferpropertiesofairarelowerthanthatoftypicallyusedliquidsandthereforerequiresaproportionallyhighermassflowratethananequivalentPVTliquidcollector.Theadvantageisthattheinfrastructurerequiredhaslowercostandcomplexity.
TheheatedairiscirculatedintoabuildingHVACsystemtodeliverthermalenergy.Excessheatgeneratedcanbesimplyventedtotheatmosphere.SomeversionsofthePVTaircollectorcanbeoperatedinawaytocoolthePVpanelstogeneratemoreelectricityandassistwithreducingthermaleffectsonlifetimeperformancedegradation.
AnumberofdifferentconfigurationsofPVTaircollectorsexist,whichvaryinengineeringsophistication.PVTaircollectorconfigurationsrangefromabasicenclosedshallowmetalboxwithanintakeandexhaustuptooptimizedheattransfersurfacesthatachieveuniformpanelheattransferacrossawiderangeofprocessandambientconditions.
PVTaircollectorscanbecarriedoutasuncoveredorcovereddesigns
.1
15L.Brottier(2018).Optimisationbiénergied’unpanneausolairemultifonctionnel:ducapteurauxinstallationsinsitu.Mécanique[physics.med-ph].UniversitéParis-Saclay,2019
.https://tel.archives-ouvertes.fr/tel-02133891
Page5
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
1.3.4UncoveredPVTcollector(WISC)
UncoveredPVTcollectors,alsodenotedasunglazedorwindand/orinfraredsensitivePVTcollectors(WISC),typicallycompriseofaPVmodulewithaheatexchangerstructureattachedtothebackofthePVmodule.WhilemostPVTcollectorsareprefabricatedunits,someproductsareofferedasheatexchangerstoberetrofittedtooff-the-shelfPVmodules.Inbothcases,agoodandlongtimedurablethermalcontactwithahighheattransfercoefficientbetweenthePVcellsandthefluidisessential.16
TherearsideoftheuncoveredPVTcollectorcanbeequippedwiththermalinsulation(e.g.mineralwoolorfoam)toreduceheatlossesoftheheatedfluid.UninsulatedPVTcollectorsarebeneficialforoperationnearandbelowambienttemperatures.ParticularlyuncoveredPVTcollectorswithincreasedheattransfertoambientairareasuitableheatsourceforheatpumpsystems.Whenthetemperatureintheheatpump’ssourceislowerthantheambient,thefluidcanbeheateduptoambienttemperatureeveninperiodswithoutsunshine.
Accordingly,uncoveredPVTcollectorscanbecategorizedinto:
?UncoveredPVTcollectorwithincreasedheattransfertoambientair
?UncoveredPVTcollectorwithoutrearinsulation
?UncoveredPVTcollectorwithrearinsulation
UncoveredPVTcollectorsarealsousedtoproviderenewablecoolingbydissipatingheatviathePVTcollectortotheambientairorbyutilizingtheradiativecoolingeffect.Indoingso,coldairorwaterisharnessed,whichcanbeutilizedforHVACapplications.
1.3.5CoveredPVTcollector
Covered,orglazedPVTcollectors,featureanadditionalglazing,whichenclosesaninsulatingairlayerbetweenthePVmoduleandthesecondaryglazing.Thisreducesheatlossesandincreasesthethermalefficiency.Moreover,coveredPVTcollectorscanreachsignificantlyhighertemperaturesthanPVmodulesoruncoveredPVTcollectors.Theoperatingtemperaturesmostlydependonthetemperatureoftheworkingfluid.Theaveragefluidtemperaturecanbebetween25°Cinswimmingpoolapplicationsto90°Cinsolarcoolingsystems(Figure3).
CoveredPVTcollectorsresembletheformanddesignofconventionalflatplatecollectorsorevacuatedvacuumtubes.Yet,PVcellsinsteadofspectrally-selectiveabsorbercoatingsabsorbtheincidentsolarirradianceandgenerateanelectricalcurrentinadditiontosolarheat.
Theinsulatingcharacteristicsofthefrontcoverincreasethethermalefficiencyandallowforhigheroperatingtemperatures.However,theadditionalopticalinterfacesincreaseopticalreflectionsandthusreducethegeneratedelectricalpower.Anti-reflectivecoatingsonthefrontglazingcanreducetheadditionalopticallosses.17
1.3.6ConcentratingPVTcollector(CPVT)
Aconcentratorsystemhastheadvantagetoreducethephotovoltaic(PV)cellareaneeded.ThereforeitispossibletousemoreexpensiveandefficientPVcells,e.g.multi-junctionphotovoltaiccells.TheconcentrationofsunlightalsoreducestheamountofhotPV-absorberareaandthereforereducesheatlossestotheambient,whichimprovessignificantlytheefficiencyforhigherapplicationtemperatures.
ConcentratorsystemsoftenrequirereliablecontrolsystemstoaccuratelytrackthesunandtoprotectthePVcellsfromdamagingover-temperatureconditions.However,therearealsostationeryPVTcollectortypesthatusenon-imagingreflectors,suchastheCompoundParabolicConcentrator(CPC),anddonothavetotrackthesun.
16Adam,Mario;Kramer,Korbinian;Fritzsche,Ulrich;Hamberger,Stephan(2014):AbschlussberichtPVT-Norm.F?rderkennzeichen01FS12035-?Verbundprojekt:StandardisierungundNormungvonmultifunktionalenPVTSolarkollektoren(PVT-Norm)“.
17Zondag,H.A.(2008):Flat-platePV-Thermalcollectorsandsystems:Areview.In:RenewableandSustainableEnergyReviews12(4),S.891–959.
Page6
Underidealconditions,about75%ofthesun'spowerdirectlyincidentuponsuchsystemscanbegatheredaselectricityandheat.Formoredetails,seethediscussionofCPVTwithinthearticleforconcentratedphotovoltaics.
Alimitationofhigh-concentrator(i.e.HCPVandHCPVT)systemsisthattheymaintaintheirlong-termadvantagesoverconventionalc-Si/mc-Sicollectorsonlyinregionsthatremainconsistentlyfreeofatmosphericaerosolcontaminants(e.g.lightclouds,smog,etc.).Powerproductionisrapidlydegradedbecause1)radiationisreflectedandscatteredoutsideofthesmall(oftenlessthan1°-2°)acceptanceangleofthecollectionoptics,and2)absorptionofspecificcomponentsofthesolarspectrumcausesoneormoreseriesjunctionswithintheMJcellstounderperform.Theshort-termimpactsofsuchpowergenerationirregularitiescanbereducedtosomedegreebyincludingelectricalandthermalstorageinthesystem.
1.4PVTapplicationsbytemperaturerange
TherangeofapplicationsofPVTcollectors,andingeneralsolarthermalcollectors,canbedividedaccordingtotheirtemperaturelevels:18
?lowtemperatureapplicationsupto50°C
?mediumtemperatureapplicationsupto80°C
?hightemperatureapplicationsabove80°C
Lowtemperatureapplicationsincludeheatpumpsystemsandheatingswimmingpoolsorspasupto50°C.PVTcollectorsinheatpumpsystemsacteitheraslowtemperaturesourcefortheheatpumpevaporatororontheloadsidetosupplymediumtemperatureheattoastoragetank.Moreover,regenerationofboreholesandgroundsourceheatexchangersispossible.1UncoveredPVTcollectorswithenhancedair-to-waterheatexchangecanevencomprisetheonlysourceofaheatpumpsystem.IncombinationwithasystemarchitectureallowingtostorecoldproducedwithWISCoraircollectors,alsoairconditioningispossible.
Lowandmediumtemperatureapplicationsforspaceheatinganddomestichotwaterprovisionarefoundinbuildings,withtemperaturesfrom20°Cto80°C.Thetemperaturesofthespecificsystemdependontherequirementsoftheheatsupplysystemfordomestichotwater(e.g.freshwaterstation,temperaturerequirementsforlegionellaprevention)andforspaceheating(e.g.underfloorheating,radiators).Moreover,thePVTcollectorarraycanbedimensionedtocoveronlysmallerfractionsoftheheatdemand(e.g.hotwaterpre-heating),thusreducingoperatingtemperaturesofthePVTcollector.
Processheatincludesadiverserangeofindustrialapplicationswithlowtohightemperaturerequirements(e.g.solarwaterdesalination,solarcooling,orpowergenerationwithconcentratingPVTcollectors).19PVTcollectortechnologiescanbeclusteredaccordingtotheirtemperaturelevelinthesameway:thesuitabilitypertemperaturerangedependsonthePVTcollectordesignandtechnology.Therefore,eachPVTcollectortechnologyfeaturesdifferentoptimaltemperatureranges.
Figure3showstypicaltemperaturerangesofbothPVTapplicationsandcollectortechnologies.20TheoperatingtemperatureofthePVTapplicationsultimatelydefinesthesuitabilityofeachtypeofPVTcollectortechnology.
18KalogirouSA(2014).Solarenergyengineering:processesandsystems.SecondEdition.AcademicPres
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)生住校財產(chǎn)安全監(jiān)管責(zé)任協(xié)議
- 油田注水井施工合同
- 樂器店租賃協(xié)議范本
- 建筑涂料施工合同封面
- 家居設(shè)計技術(shù)合同守則
- 2024版項目居間合作協(xié)議合同范本
- 二零二五年度廣告安裝與社區(qū)文化推廣合同范本3篇
- 二零二五年度知識產(chǎn)權(quán)資產(chǎn)評估與交易合同正規(guī)范本3篇
- 江南影視藝術(shù)職業(yè)學(xué)院《特殊教育學(xué)與基礎(chǔ)手語》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024廣告發(fā)布合作合同
- 山東師范大學(xué)新聞采訪期末復(fù)習(xí)題
- 小王子-英文原版
- 2024年江蘇省導(dǎo)游服務(wù)技能大賽理論考試題庫(含答案)
- 讓與擔(dān)保合同協(xié)議范本
- 2024年中考英語閱讀理解表格型解題技巧講解(含練習(xí)題及答案)
- 住宅設(shè)計效果圖協(xié)議書
- 新版中國食物成分表
- 浙江省溫州市溫州中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試試題含解析
- 2024河南鄭州市金水區(qū)事業(yè)單位招聘45人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 食物損失和浪費控制程序
- 完整版:美制螺紋尺寸對照表(牙數(shù)、牙高、螺距、小徑、中徑外徑、鉆孔)
評論
0/150
提交評論