新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線???jí)狠S小題全歸類(16大題型)(練習(xí))(原卷版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線常考?jí)狠S小題全歸類(16大題型)(練習(xí))(原卷版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線???jí)狠S小題全歸類(16大題型)(練習(xí))(原卷版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線???jí)狠S小題全歸類(16大題型)(練習(xí))(原卷版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)講練專題17 圓錐曲線常考?jí)狠S小題全歸類(16大題型)(練習(xí))(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題17圓錐曲線???jí)狠S小題全歸類目錄01阿波羅尼斯圓與圓錐曲線 202蒙日?qǐng)A 303阿基米德三角形 304仿射變換問題 405圓錐曲線第二定義 506焦半徑問題 507圓錐曲線第三定義 608定比點(diǎn)差法與點(diǎn)差法 609切線問題 710焦點(diǎn)三角形問題 811焦點(diǎn)弦問題 812圓錐曲線與張角問題 913圓錐曲線與角平分線問題 914圓錐曲線與通徑問題 1015圓錐曲線的光學(xué)性質(zhì)問題 1016圓錐曲線與四心問題 1101阿波羅尼斯圓與圓錐曲線1.(2024·江西贛州·統(tǒng)考模擬預(yù)測(cè))阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德并稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對(duì)圓錐曲線有深刻而系統(tǒng)的研究,阿波羅尼斯圓是他的研究成果之一,指的是:已知?jiǎng)狱c(diǎn)M與兩定點(diǎn)A,B的距離之比為SKIPIF1<0,那么點(diǎn)M的軌跡就是阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.已知在平面直角坐標(biāo)系中,圓SKIPIF1<0、點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0,M為圓O上的動(dòng)點(diǎn),則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2024·全國(guó)·高三專題練習(xí))已知平面內(nèi)兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0及動(dòng)點(diǎn)SKIPIF1<0,若SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則點(diǎn)SKIPIF1<0的軌跡是圓.后世把這種圓稱為阿波羅尼斯圓.已知SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0,直線SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0,SKIPIF1<0的交點(diǎn),則SKIPIF1<0的最小值為(

)A.3SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2024·全國(guó)·校聯(lián)考模擬預(yù)測(cè))阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得?阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0的距離之比為定值SKIPIF1<0,且SKIPIF1<0的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,則下列說法錯(cuò)誤的是(

)A.SKIPIF1<0的方程為SKIPIF1<0B.當(dāng)SKIPIF1<0三點(diǎn)不共線時(shí),則SKIPIF1<0C.在C上存在點(diǎn)M,使得SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<002蒙日?qǐng)A4.(2024·青海西寧·統(tǒng)考)法國(guó)數(shù)學(xué)家加斯帕·蒙日被稱為“畫法幾何創(chuàng)始人”“微分幾何之父”.他發(fā)現(xiàn)與橢圓相切的兩條互相垂直的切線的交點(diǎn)的軌跡是以該橢圓中心為圓心的圓,這個(gè)圓被稱為該橢圓的蒙日?qǐng)A.若橢圓:SKIPIF1<0(SKIPIF1<0)的蒙日?qǐng)A為SKIPIF1<0,則橢圓Γ的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2024·陜西西安·長(zhǎng)安一中??迹懊扇?qǐng)A”涉及幾何學(xué)中的一個(gè)著名定理,該定理的內(nèi)容為:橢圓上兩條互相輸出垂直的切線的交點(diǎn)必在一個(gè)與橢圓同心的圓上,該圓稱為橢圓的蒙日?qǐng)A.若橢圓C:SKIPIF1<0的離心率為SKIPIF1<0,則橢圓C的蒙日?qǐng)A的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2024·江西·統(tǒng)考模擬預(yù)測(cè))定義:圓錐曲線SKIPIF1<0的兩條相互垂直的切線的交點(diǎn)SKIPIF1<0的軌跡是以坐標(biāo)原點(diǎn)為圓心,SKIPIF1<0為半徑的圓,這個(gè)圓稱為蒙日?qǐng)A.已知橢圓SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0是直線SKIPIF1<0上的一點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線與橢圓相切于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0是坐標(biāo)原點(diǎn),連接SKIPIF1<0,當(dāng)SKIPIF1<0為直角時(shí),則SKIPIF1<0(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<003阿基米德三角形7.(2024·陜西銅川·統(tǒng)考)古希臘哲學(xué)家、百科式科學(xué)家阿基米德最早采用分割法求得橢圓的面積為橢圓的長(zhǎng)半軸長(zhǎng)和短半軸長(zhǎng)乘積的SKIPIF1<0倍,這種方法已具有積分計(jì)算的雛形.已知橢圓SKIPIF1<0的面積為SKIPIF1<0,離心率為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上的動(dòng)點(diǎn),則下列結(jié)論正確的是(

)①橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程可以為SKIPIF1<0

②若SKIPIF1<0,則SKIPIF1<0③存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0

④SKIPIF1<0的最小值為SKIPIF1<0A.①③ B.②④ C.②③ D.①④8.(2024·河北·校聯(lián)考)拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形稱為阿基米德三角形,在數(shù)學(xué)發(fā)展的歷史長(zhǎng)河中,它不斷地閃煉出真理的光輝,這個(gè)兩千多年的古老圖形,蘊(yùn)藏著很多性質(zhì).已知拋物線SKIPIF1<0,過焦點(diǎn)的弦SKIPIF1<0的兩個(gè)端點(diǎn)的切線相交于點(diǎn)SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上,且以SKIPIF1<0為直徑的圓過SKIPIF1<0點(diǎn)B.SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上,但以SKIPIF1<0為直徑的圓不過SKIPIF1<0點(diǎn)C.SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上,但以SKIPIF1<0為直徑的圓不過SKIPIF1<0點(diǎn)D.SKIPIF1<0點(diǎn)必在直線SKIPIF1<0上,且以SKIPIF1<0為直徑的圓過SKIPIF1<0點(diǎn)9.(2024·青海西寧·統(tǒng)考)拋物線的弦與過弦的端點(diǎn)的兩條切線所圍成的三角形常被稱為阿基米德三角形.阿基米德三角形有一些有趣的性質(zhì),如:若拋物線的弦過焦點(diǎn),則過弦的端點(diǎn)的兩條切線的斜率之積為定值.設(shè)拋物線SKIPIF1<0,弦AB過焦點(diǎn),△ABQ為阿基米德三角形,則△ABQ的面積的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<004仿射變換問題10.(2024·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0,SKIPIF1<0分別為橢圓左右焦點(diǎn),過SKIPIF1<0作兩條互相平行的弦,分別與橢圓交于SKIPIF1<0四點(diǎn),若當(dāng)兩條弦垂直于SKIPIF1<0軸時(shí),點(diǎn)SKIPIF1<0所形成的平行四邊形面積最大,則橢圓離心率的取值范圍為.11.(2024·江蘇·高二專題練習(xí))已知橢圓SKIPIF1<0左頂點(diǎn)為SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上兩動(dòng)點(diǎn),直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,直線SKIPIF1<0的斜率分別為SKIPIF1<0且SKIPIF1<0,SKIPIF1<0(SKIPIF1<0是非零實(shí)數(shù)),求SKIPIF1<0.12.(2024·全國(guó)·高三專題練習(xí))如圖,作斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0在直線SKIPIF1<0的上方,則△SKIPIF1<0內(nèi)切圓的圓心所在的定直線方程為.05圓錐曲線第二定義13.(2024·四川眉山·??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,過SKIPIF1<0且斜率為SKIPIF1<0的直線交SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.(2024·江蘇南京·高三南京市第一中學(xué)??奸_學(xué)考試)已知以F為焦點(diǎn)的拋物線SKIPIF1<0上的兩點(diǎn)A,B,滿足SKIPIF1<0,則弦AB的中點(diǎn)到C的準(zhǔn)線的距離的最大值是(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.415.(2024·全國(guó)·高三專題練習(xí))已知橢圓SKIPIF1<0=1內(nèi)有一點(diǎn)P(1,-1),F(xiàn)為橢圓的右焦點(diǎn),在橢圓上有一點(diǎn)M,使|MP|+2|MF|取得最小值,則點(diǎn)M坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<016.(2024·山東濟(jì)寧·統(tǒng)考)過拋物線SKIPIF1<0焦點(diǎn)F的直線與該拋物線及其準(zhǔn)線都相交,交點(diǎn)從左到右依次為A,B,C.若SKIPIF1<0,則線段BC的中點(diǎn)到準(zhǔn)線的距離為(

)A.3 B.4 C.5 D.606焦半徑問題17.(2024·安徽·高二統(tǒng)考期末)過拋物線SKIPIF1<0(a>0)的焦點(diǎn)F作一直線交拋物線于P、Q兩點(diǎn),若線段PF與FQ的長(zhǎng)分別為p、q,則SKIPIF1<0等于()A.2 B.SKIPIF1<0 C.SKIPIF1<0SKIPIF1<0 D.SKIPIF1<018.(2024·全國(guó)·高三專題練習(xí))長(zhǎng)為11的線段AB的兩端點(diǎn)都在雙曲線SKIPIF1<0的右支上,則AB中點(diǎn)M的橫坐標(biāo)的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<019.(2024·全國(guó)·高三專題練習(xí))拋物線SKIPIF1<0的焦點(diǎn)弦被焦點(diǎn)分成長(zhǎng)是m和n的兩部分,則m與n的關(guān)系是(

)A.m+n=mn B.m+n=4 C.mn=4 D.無(wú)法確定20.已知SKIPIF1<0為拋物線SKIPIF1<0的焦點(diǎn),SKIPIF1<0是該拋物線上的兩點(diǎn),SKIPIF1<0,則線段SKIPIF1<0的中點(diǎn)到SKIPIF1<0軸的距離為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<007圓錐曲線第三定義21.(2024·貴州貴陽(yáng)·高三統(tǒng)考期末)過拋物線SKIPIF1<0的焦點(diǎn)的直線與拋物線交于A,B兩點(diǎn),若SKIPIF1<0的中點(diǎn)的縱坐標(biāo)為2,則SKIPIF1<0等于(

)A.4 B.6 C.8 D.1022.(2024·河北石家莊·高三石家莊二中校考開學(xué)考試)過橢圓SKIPIF1<0上一點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線,且切線的斜率小于SKIPIF1<0,切點(diǎn)為SKIPIF1<0,交橢圓另一點(diǎn)SKIPIF1<0,若SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0的斜率(

)A.為定值SKIPIF1<0 B.為定值SKIPIF1<0 C.為定值SKIPIF1<0 D.隨SKIPIF1<0變化而變化23.(2024·陜西咸陽(yáng)·統(tǒng)考)已知雙曲線SKIPIF1<0上存在兩點(diǎn)SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,且線段SKIPIF1<0的中點(diǎn)坐標(biāo)為SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<008定比點(diǎn)差法與點(diǎn)差法24.(2024·浙江溫州·高三溫州中學(xué)??茧A段練習(xí))如圖,P為橢圓SKIPIF1<0上的一動(dòng)點(diǎn),過點(diǎn)P作橢圓SKIPIF1<0的兩條切線PA,PB,斜率分別為SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0為定值,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<025.(2024·江蘇南京·高二南京市秦淮中學(xué)??计谀┮阎甭蕿镾KIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0(SKIPIF1<0),那么SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0,或SKIPIF1<026.(2024·河北衡水·高三河北衡水中學(xué)校考階段練習(xí))已知橢圓SKIPIF1<0內(nèi)有一定點(diǎn)SKIPIF1<0,過點(diǎn)P的兩條直線SKIPIF1<0,SKIPIF1<0分別與橢圓SKIPIF1<0交于A、C和B、D兩點(diǎn),且滿足SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0變化時(shí),直線CD的斜率總為SKIPIF1<0,則橢圓SKIPIF1<0的離心率為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<027.(2024·全國(guó)·高三專題練習(xí))設(shè)SKIPIF1<0、SKIPIF1<0分別為橢圓SKIPIF1<0的左、右焦點(diǎn),點(diǎn)A、SKIPIF1<0在橢圓上,若SKIPIF1<0,則點(diǎn)A的坐標(biāo)是.09切線問題28.(2024·湖南長(zhǎng)沙·高三雅禮中學(xué)??茧A段練習(xí))已知O為坐標(biāo)原點(diǎn),點(diǎn)P在標(biāo)準(zhǔn)單位圓上,過點(diǎn)P作圓C:SKIPIF1<0的切線,切點(diǎn)為Q,則SKIPIF1<0的最小值為.29.(2024·四川綿陽(yáng)·高三四川省綿陽(yáng)南山中學(xué)校考階段練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0為:SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0為SKIPIF1<0上的一個(gè)動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作拋物線SKIPIF1<0的兩條切線SKIPIF1<0,其中SKIPIF1<0為切點(diǎn),則SKIPIF1<0的最小值為.30.(2024·山東濰坊·統(tǒng)考模擬預(yù)測(cè))在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過SKIPIF1<0上一點(diǎn)SKIPIF1<0(異于原點(diǎn)SKIPIF1<0)作SKIPIF1<0的切線,與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.31.(2024·全國(guó)·高三專題練習(xí))過橢圓SKIPIF1<0上一動(dòng)點(diǎn)SKIPIF1<0分別向圓SKIPIF1<0:SKIPIF1<0和圓SKIPIF1<0:SKIPIF1<0作切線,切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為.10焦點(diǎn)三角形問題32.(2024·河北張家口·高二張家口市第四中學(xué)??茧A段練習(xí))已知SKIPIF1<0是雙曲線SKIPIF1<0的一個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0為坐標(biāo)原點(diǎn),若SKIPIF1<0,則SKIPIF1<0的面積為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<033.(2024·全國(guó)·高三專題練習(xí))已知SKIPIF1<0在雙曲線SKIPIF1<0上,其左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,三角形SKIPIF1<0的內(nèi)切圓切x軸于點(diǎn)M,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<034.(2024·江西宜春·上高二中??寄M預(yù)測(cè))已知雙曲線SKIPIF1<0(SKIPIF1<0)的左?右焦點(diǎn)分別為SKIPIF1<0為雙曲線上的一點(diǎn),SKIPIF1<0為SKIPIF1<0的內(nèi)心,且SKIPIF1<0,則SKIPIF1<0的離心率為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011焦點(diǎn)弦問題35.(2024·四川內(nèi)江·高三威遠(yuǎn)中學(xué)校??茧A段練習(xí))橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線交橢圓于SKIPIF1<0兩點(diǎn),交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0的三等分點(diǎn),SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,則橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<036.(2024·浙江金華·高二浙江金華第一中學(xué)??计谀┰O(shè)雙曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P在雙曲線上,下列說法正確的是(

)A.若SKIPIF1<0為直角三角形,則SKIPIF1<0的周長(zhǎng)是SKIPIF1<0B.若SKIPIF1<0為直角三角形,則SKIPIF1<0的面積是6C.若SKIPIF1<0為銳角三角形,則SKIPIF1<0的取值范圍是SKIPIF1<0D.若SKIPIF1<0為鈍角三角形,則SKIPIF1<0的取值范圍是SKIPIF1<012圓錐曲線與張角問題37.(2024·山東棗莊·統(tǒng)考)設(shè)SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的兩個(gè)焦點(diǎn),若SKIPIF1<0上存在點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<038.(2024·遼寧朝陽(yáng)·高二統(tǒng)考期末)設(shè)SKIPIF1<0分別為橢圓SKIPIF1<0的左?右焦點(diǎn),點(diǎn)SKIPIF1<0是橢圓SKIPIF1<0上異于頂點(diǎn)的兩點(diǎn),SKIPIF1<0,則SKIPIF1<0,若點(diǎn)SKIPIF1<0還滿足SKIPIF1<0,則SKIPIF1<0的面積為.39.(2024·浙江杭州·高三浙江大學(xué)附屬中學(xué)??茧A段練習(xí))已知O為坐標(biāo)原點(diǎn),橢圓SKIPIF1<0的左、右焦點(diǎn)分別是SKIPIF1<0,過點(diǎn)SKIPIF1<0且斜率為k的直線與圓SKIPIF1<0交于A,B兩點(diǎn)(點(diǎn)B在x軸上方),線段SKIPIF1<0與橢圓交于點(diǎn)M,SKIPIF1<0延長(zhǎng)線與橢圓交于點(diǎn)N,且SKIPIF1<0,則橢圓的離心率為,直線SKIPIF1<0的斜率為.13圓錐曲線與角平分線問題40.(2024·湖北武漢·武漢二中校聯(lián)考模擬預(yù)測(cè))已知拋物線SKIPIF1<0上橫坐標(biāo)為4的點(diǎn)到拋物線焦點(diǎn)SKIPIF1<0的距離為SKIPIF1<0,點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0上的點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0的平分線交拋物線SKIPIF1<0于點(diǎn)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0都在SKIPIF1<0軸的上方,則直線SKIPIF1<0的斜率為.41.(2024·重慶萬(wàn)州·統(tǒng)考模擬預(yù)測(cè))已知雙曲線C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,P是C在第一象限上的一點(diǎn),且直線SKIPIF1<0的斜率為SKIPIF1<0,SKIPIF1<0的平分線交x軸于點(diǎn)A,點(diǎn)B滿足SKIPIF1<0,SKIPIF1<0,則雙曲線C的漸近線方程為.42.(2024·黑龍江·黑龍江實(shí)驗(yàn)中學(xué)??迹┮阎p曲線SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0是雙曲線上的任意一點(diǎn),滿足SKIPIF1<0,SKIPIF1<0的平分線與SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則SKIPIF1<0分SKIPIF1<0所得的兩個(gè)三角形的面積之比SKIPIF1<0.43.(2024·湖南·高三長(zhǎng)郡中學(xué)校聯(lián)考階段練習(xí))已知橢圓SKIPIF1<0的左?右焦點(diǎn)分別為SKIPIF1<0,離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0是橢圓上的任意一點(diǎn),滿足SKIPIF1<0的平分線與SKIPIF1<0相交于點(diǎn)SKIPIF1<0,則SKIPIF1<0分SKIPIF1<0所得的兩個(gè)三角形的面積之比SKIPIF1<0.44.(2024·全國(guó)·高三專題練習(xí))已知點(diǎn)SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0上異于頂點(diǎn)的動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0分別為橢圓的左、右焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0的平分線與直線SKIPIF1<0交于點(diǎn)SKIPIF1<0,則四邊形SKIPIF1<0的面積的最大值為.14圓錐曲線與通徑問題45.已知直線SKIPIF1<0過拋物線SKIPIF1<0的焦點(diǎn),且與SKIPIF1<0的對(duì)稱軸垂直,SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0為SKIPIF1<0的準(zhǔn)線上一點(diǎn),則SKIPIF1<0的面積為()A.18 B.24 C.36 D.4846.以SKIPIF1<0軸為對(duì)稱軸,拋物線通徑的長(zhǎng)為8,頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線的方程是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<047.(2024·貴州黔東南·統(tǒng)考)過雙曲線的焦點(diǎn)與雙曲線實(shí)軸垂直的直線被雙曲線截得的線段的長(zhǎng)稱為雙曲線的通徑,其長(zhǎng)等于SKIPIF1<0(SKIPIF1<0、SKIPIF1<0分別為雙曲線的實(shí)半軸長(zhǎng)與虛半軸長(zhǎng)).已知雙曲線SKIPIF1<0(SKIPIF1<0)的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,若點(diǎn)SKIPIF1<0是雙曲線SKIPIF1<0上位于第四象限的任意一點(diǎn),直線SKIPIF1<0是雙曲線的經(jīng)過第二、四象限的漸近線,SKIPIF1<0于點(diǎn)SKIPIF1<0,且SKIPIF1<0的最小值為3,則雙曲線SKIPIF1<0的通徑為.15圓錐曲線的光學(xué)性質(zhì)問題48.(2024·四川巴中·高三統(tǒng)考開學(xué)考試)拋物線有如下光學(xué)性質(zhì):過焦點(diǎn)的光線經(jīng)拋物線反射后得到的光線平行于拋物線的對(duì)稱軸;反之,平行于拋物線對(duì)稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點(diǎn).已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,一條平行于SKIPIF1<0軸的光線從點(diǎn)SKIPIF1<0射出,經(jīng)過拋物線上的點(diǎn)SKIPIF1<0反射后,再經(jīng)拋物線上的另一點(diǎn)SKIPIF1<0射出,則SKIPIF1<0.49.(2024·山東青島·統(tǒng)考)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,過SKIPIF1<0的直線與SKIPIF1<0交于點(diǎn)SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0為SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線,點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對(duì)稱點(diǎn)為SKIPIF1<0.由橢圓的光學(xué)性質(zhì)知,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.50.(2024·安徽六安·高三六安一中??茧A段練習(xí))如圖所示,橢圓有這樣的光學(xué)性質(zhì):從橢圓的一個(gè)焦點(diǎn)出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個(gè)焦點(diǎn).已知橢圓SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,P為橢圓上不與頂點(diǎn)重合的任一點(diǎn),I為SKIPIF1<0的內(nèi)心,記直線OP,PI(O為坐標(biāo)原點(diǎn))的斜率分別為SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則橢圓的離心率為.16圓錐曲線與四心問題51.(2024·海南海口·??寄M預(yù)測(cè))已知SKIPIF1<0、SKIPIF1<0是橢圓SKIPIF1<0的左右焦點(diǎn),點(diǎn)SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn),且SKIPIF1<0,若SKIPIF1<0為SKIPIF1<0的內(nèi)心,則SKIPIF1<0面積的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論