中國地質(zhì)大學(xué)(武漢)《招貼設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
中國地質(zhì)大學(xué)(武漢)《招貼設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
中國地質(zhì)大學(xué)(武漢)《招貼設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
中國地質(zhì)大學(xué)(武漢)《招貼設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
中國地質(zhì)大學(xué)(武漢)《招貼設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁中國地質(zhì)大學(xué)(武漢)《招貼設(shè)計》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機(jī)視覺的人臉識別任務(wù)中,假設(shè)要在一個大型數(shù)據(jù)庫中快速準(zhǔn)確地識別出特定人物的面部。數(shù)據(jù)庫中的人臉圖像可能存在表情、光照和姿態(tài)的變化。為了提高人臉識別的性能,以下哪種方法是常用且有效的?()A.提取人臉的全局特征,如整體形狀和輪廓B.僅關(guān)注人臉的局部特征,如眼睛和嘴巴C.使用多模態(tài)數(shù)據(jù),結(jié)合人臉的紋理和深度信息D.隨機(jī)選擇人臉特征進(jìn)行匹配2、在計算機(jī)視覺中,人臉檢測和識別是重要的應(yīng)用方向。以下關(guān)于人臉檢測和識別的說法,不正確的是()A.人臉檢測旨在確定圖像或視頻中是否存在人臉,并定位人臉的位置B.人臉識別是在檢測到人臉的基礎(chǔ)上,對人臉的身份進(jìn)行識別和驗證C.深度學(xué)習(xí)方法在人臉檢測和識別中取得了巨大的成功,但仍然存在一些挑戰(zhàn),如光照變化和姿態(tài)變化D.人臉檢測和識別技術(shù)已經(jīng)非常成熟,不存在任何錯誤率和安全隱患3、計算機(jī)視覺中的目標(biāo)計數(shù)任務(wù),例如統(tǒng)計圖像中物體的數(shù)量。假設(shè)要計算一張果園圖片中蘋果的數(shù)量,以下關(guān)于目標(biāo)計數(shù)方法的描述,正確的是:()A.基于傳統(tǒng)的圖像分割和對象識別方法可以準(zhǔn)確快速地完成目標(biāo)計數(shù)B.深度學(xué)習(xí)中的回歸模型不適合用于目標(biāo)計數(shù)任務(wù)C.目標(biāo)的大小、形狀和分布對計數(shù)結(jié)果沒有影響D.結(jié)合深度學(xué)習(xí)的密度估計方法能夠有效地實現(xiàn)目標(biāo)計數(shù)4、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優(yōu)勢在于()A.去噪效果好B.保持圖像細(xì)節(jié)C.計算效率高D.以上都是5、在計算機(jī)視覺的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會對結(jié)果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進(jìn)分類算法來應(yīng)對6、當(dāng)利用計算機(jī)視覺進(jìn)行視頻監(jiān)控中的異常行為檢測,例如打架、盜竊等,以下哪種方法可能有助于準(zhǔn)確識別異常行為?()A.建立正常行為模型B.運動軌跡分析C.人群密度估計D.以上都是7、在計算機(jī)視覺的圖像分割任務(wù)中,假設(shè)要對細(xì)胞圖像進(jìn)行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項是不準(zhǔn)確的?()A.模型對細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時間和計算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)8、在計算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從一個大型圖像數(shù)據(jù)庫中快速找到與給定圖像相似的圖像。以下關(guān)于圖像檢索方法的描述,正確的是:()A.基于文本標(biāo)注的圖像檢索方法依賴于人工標(biāo)注的準(zhǔn)確性和完整性,檢索效果不穩(wěn)定B.基于內(nèi)容的圖像檢索通過提取圖像的特征進(jìn)行相似性比較,但特征的選擇對檢索結(jié)果影響不大C.哈希方法能夠?qū)⒏呔S的圖像特征映射為低維的哈希碼,大大提高檢索效率,但會損失一定的準(zhǔn)確性D.所有的圖像檢索方法都能夠在大規(guī)模數(shù)據(jù)庫中實現(xiàn)實時、準(zhǔn)確的檢索9、計算機(jī)視覺中的醫(yī)學(xué)圖像分析中,假設(shè)要對腫瘤進(jìn)行檢測和分割。以下關(guān)于醫(yī)學(xué)圖像分析方法的描述,正確的是:()A.由于醫(yī)學(xué)圖像的特殊性,傳統(tǒng)的計算機(jī)視覺方法無法應(yīng)用于醫(yī)學(xué)圖像分析B.深度學(xué)習(xí)方法在醫(yī)學(xué)圖像分析中能夠準(zhǔn)確檢測腫瘤,但對小腫瘤容易漏檢C.多模態(tài)醫(yī)學(xué)圖像融合可以提供更豐富的信息,但融合算法復(fù)雜,效果不穩(wěn)定D.醫(yī)學(xué)圖像分析的結(jié)果不需要經(jīng)過醫(yī)生的審核和確認(rèn),可以直接用于診斷10、在計算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,假設(shè)要在一段視頻中持續(xù)跟蹤一個移動的物體,例如跟蹤一只飛行的鳥。物體可能會被其他物體遮擋,并且外觀可能會發(fā)生變化。以下哪種目標(biāo)跟蹤方法在這種復(fù)雜情況下更有可能成功?()A.基于卡爾曼濾波的跟蹤方法,預(yù)測物體的位置和速度B.基于深度學(xué)習(xí)的Siamese網(wǎng)絡(luò)跟蹤方法C.只在視頻的起始幀確定目標(biāo)位置,后續(xù)幀不再跟蹤D.隨機(jī)選擇視頻中的區(qū)域作為跟蹤目標(biāo)11、計算機(jī)視覺中的動作識別是對視頻中人物或物體的動作進(jìn)行分類和識別。以下關(guān)于動作識別的描述,不準(zhǔn)確的是()A.動作識別需要分析視頻中的時空特征來理解動作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動作識別任務(wù)中被廣泛應(yīng)用,分別處理空間和時間信息C.動作識別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價值D.動作識別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識別各種復(fù)雜和細(xì)微的動作12、在計算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一組不同角度拍攝的二維圖像中重建出物體的三維模型。這些圖像可能存在噪聲和拍攝誤差。為了獲得準(zhǔn)確的三維重建結(jié)果,以下哪種技術(shù)是重要的?()A.基于立體視覺的方法,通過匹配不同圖像中的對應(yīng)點B.直接使用二維圖像的平均信息來估計三維形狀C.忽略圖像中的噪聲和誤差,進(jìn)行簡單的重建D.隨機(jī)生成三維模型,然后與二維圖像進(jìn)行匹配13、計算機(jī)視覺中的圖像修復(fù)是填補圖像中的缺失或損壞部分。假設(shè)我們有一張老照片,其中部分區(qū)域被損壞,需要進(jìn)行修復(fù)。以下哪種圖像修復(fù)方法能夠生成自然、合理的內(nèi)容,與周圍區(qū)域融合良好?()A.基于紋理合成的修復(fù)方法B.基于插值和填充的修復(fù)方法C.基于深度學(xué)習(xí)的圖像修復(fù)網(wǎng)絡(luò),如ContextEncoderD.基于圖像分解和重構(gòu)的修復(fù)方法14、在計算機(jī)視覺的目標(biāo)識別任務(wù)中,除了識別目標(biāo)的類別,還需要確定目標(biāo)的位置和大小。假設(shè)我們要在一幅復(fù)雜的圖像中識別多個不同大小的物體,以下哪種目標(biāo)識別算法能夠適應(yīng)不同尺度的目標(biāo)?()A.基于滑動窗口的目標(biāo)識別算法B.基于特征金字塔的目標(biāo)識別算法C.基于注意力機(jī)制的目標(biāo)識別算法D.基于模板匹配的目標(biāo)識別算法15、計算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定的目標(biāo)。以下關(guān)于目標(biāo)跟蹤的敘述,不正確的是()A.目標(biāo)跟蹤可以基于特征匹配、濾波算法或深度學(xué)習(xí)方法來實現(xiàn)B.目標(biāo)的外觀變化、遮擋和背景干擾等因素會給目標(biāo)跟蹤帶來挑戰(zhàn)C.目標(biāo)跟蹤在智能監(jiān)控、人機(jī)交互和自動駕駛等領(lǐng)域有著廣泛的應(yīng)用D.目標(biāo)跟蹤算法能夠在任何情況下都準(zhǔn)確地跟蹤目標(biāo),不受復(fù)雜環(huán)境的影響二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋計算機(jī)視覺中的光照變化處理方法。2、(本題5分)解釋計算機(jī)視覺在保險理賠中的應(yīng)用。3、(本題5分)解釋計算機(jī)視覺中的對抗生成網(wǎng)絡(luò)在圖像生成中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)運用圖像識別技術(shù),檢測銀行金庫內(nèi)物品的存放情況。2、(本題5分)開發(fā)一個可以識別不同種類珊瑚的計算機(jī)視覺應(yīng)用。3、(本題5分)對演唱會的視頻進(jìn)行觀眾情緒分析和熱度評估。4、(本題5分)利用目標(biāo)檢測算法,在衛(wèi)星圖像中檢測建筑物。5、(本題5分)利用圖像配準(zhǔn)技術(shù),將兩張有偏差的醫(yī)學(xué)圖像進(jìn)行精確對齊。四、分析題(本大題共3個小題,共30分)1、(本題10分)解讀某體育賽事的官

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論