安徽大學《人工智能與創(chuàng)新設(shè)計》2022-2023學年第一學期期末試卷_第1頁
安徽大學《人工智能與創(chuàng)新設(shè)計》2022-2023學年第一學期期末試卷_第2頁
安徽大學《人工智能與創(chuàng)新設(shè)計》2022-2023學年第一學期期末試卷_第3頁
安徽大學《人工智能與創(chuàng)新設(shè)計》2022-2023學年第一學期期末試卷_第4頁
安徽大學《人工智能與創(chuàng)新設(shè)計》2022-2023學年第一學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁安徽大學

《人工智能與創(chuàng)新設(shè)計》2022-2023學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學習的文本生成模型可以學習語言的模式和規(guī)律,但可能存在重復和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當?shù)奈恼?、在人工智能的圖像增強技術(shù)中,目的是提高圖像的質(zhì)量和可讀性。假設(shè)我們要對一張低光照條件下拍攝的照片進行增強,以下關(guān)于圖像增強的方法,哪一項是不準確的?()A.直方圖均衡化B.銳化濾波C.中值濾波D.圖像增強不會引入任何噪聲3、深度學習模型在圖像識別、語音識別等領(lǐng)域取得了巨大的成功,但也面臨著過擬合、計算資源需求大等挑戰(zhàn)。假設(shè)要訓練一個深度神經(jīng)網(wǎng)絡(luò)來識別各種動物的圖像,然而數(shù)據(jù)量有限,為了避免過擬合同時提高模型的性能,以下哪種方法最為有效?()A.增加網(wǎng)絡(luò)層數(shù)B.減少訓練輪數(shù)C.使用數(shù)據(jù)增強技術(shù)D.降低學習率4、在自然語言處理中,詞向量表示是基礎(chǔ)技術(shù)之一。假設(shè)要對大量文本進行處理和分析。以下關(guān)于詞向量的描述,哪一項是不準確的?()A.詞向量可以將單詞轉(zhuǎn)換為數(shù)值向量,便于計算機處理和計算B.常見的詞向量模型有One-Hot編碼、Word2Vec和GloVe等C.詞向量的維度越高,表達能力越強,但計算和存儲成本也越高D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進行更新和優(yōu)化5、人工智能在金融領(lǐng)域的應用包括風險評估、投資決策和欺詐檢測等。假設(shè)一個銀行正在使用人工智能進行風險評估,以下關(guān)于金融領(lǐng)域人工智能應用的描述,正確的是:()A.人工智能可以完全取代人類專家的判斷,獨立做出準確的風險評估和投資決策B.數(shù)據(jù)的質(zhì)量和完整性對人工智能在金融領(lǐng)域的應用效果沒有影響C.結(jié)合人工智能模型和人類專家的經(jīng)驗,可以更有效地進行金融風險評估和管理D.人工智能在金融領(lǐng)域的應用不存在任何風險和監(jiān)管挑戰(zhàn)6、人工智能中的元學習技術(shù)旨在讓模型能夠快速適應新的任務(wù)和數(shù)據(jù)分布。假設(shè)要開發(fā)一個能夠在不同領(lǐng)域的小樣本學習任務(wù)中表現(xiàn)良好的元學習模型,以下哪種元學習方法在泛化能力和學習效率方面具有更大的潛力?()A.基于模型的元學習B.基于優(yōu)化的元學習C.基于度量的元學習D.以上方法結(jié)合使用7、人工智能中的無監(jiān)督學習可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和結(jié)構(gòu)。以下關(guān)于無監(jiān)督學習的描述,不正確的是()A.聚類分析和主成分分析是常見的無監(jiān)督學習方法B.無監(jiān)督學習不需要事先標注數(shù)據(jù),能夠自動從數(shù)據(jù)中學習特征C.無監(jiān)督學習的結(jié)果通常難以解釋和評估,應用范圍相對較窄D.可以用于數(shù)據(jù)預處理、特征提取和異常檢測等任務(wù)8、人工智能在醫(yī)療影像診斷中的應用不斷發(fā)展。假設(shè)一個醫(yī)院要引入人工智能輔助診斷系統(tǒng)來檢測癌癥。以下關(guān)于該應用的描述,哪一項是錯誤的?()A.能夠提高診斷的準確性和效率,減少漏診和誤診的情況B.可以與醫(yī)生的經(jīng)驗和判斷相結(jié)合,提供更全面的診斷依據(jù)C.人工智能診斷系統(tǒng)可以完全取代病理醫(yī)生的工作,獨立做出診斷結(jié)論D.需要經(jīng)過嚴格的臨床試驗和驗證,確保其安全性和有效性9、在人工智能的發(fā)展中,倫理和社會問題日益受到關(guān)注。例如,自動駕駛汽車在面臨不可避免的事故時,需要做出決策以最小化傷亡。這種情況下,以下哪種觀點是需要重點考慮的?()A.優(yōu)先保護乘客的生命安全B.隨機選擇保護對象C.按照預設(shè)的規(guī)則進行決策,不考慮具體情況D.綜合考慮多種因素,如法律、道德和社會影響10、在人工智能的醫(yī)療應用中,疾病診斷是一個重要的方向。假設(shè)我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對大量的醫(yī)療數(shù)據(jù)進行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項是不準確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺的細微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨立做出準確的判斷C.有助于提高診斷的效率和準確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗和專業(yè)知識進行綜合判斷11、人工智能在金融風險管理中的應用逐漸增多。假設(shè)要利用人工智能模型預測市場風險,以下關(guān)于模型評估指標的選擇,哪一項是最重要的?()A.準確率,即模型正確預測的比例B.召回率,即模型正確識別出風險的比例C.F1值,綜合考慮準確率和召回率D.均方誤差,衡量模型預測值與實際值之間的差異12、人工智能在智能推薦系統(tǒng)中的應用越來越普遍。假設(shè)要為一個電商平臺開發(fā)推薦系統(tǒng),以下關(guān)于考慮用戶興趣動態(tài)變化的方法,哪一項是最重要的?()A.定期重新訓練模型,以反映用戶興趣的最新變化B.只根據(jù)用戶的歷史購買記錄進行推薦,不考慮近期行為C.為用戶推薦始終不變的熱門商品,不考慮其個人興趣D.隨機推薦商品,期望能夠滿足用戶的動態(tài)興趣13、在人工智能的圖像生成領(lǐng)域,例如生成逼真的藝術(shù)作品或虛擬場景,以下哪種技術(shù)的發(fā)展起到了關(guān)鍵作用?()A.生成對抗網(wǎng)絡(luò)B.自編碼器C.變分自編碼器D.玻爾茲曼機14、在人工智能的圖像識別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對衛(wèi)星圖像中的地物進行分類,以下哪種方法可能會與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類效果?()A.支持向量機B.決策樹C.聚類分析D.以上都有可能15、強化學習在機器人控制中發(fā)揮著重要作用。假設(shè)一個機器人需要學習在復雜環(huán)境中行走而不摔倒,以下關(guān)于強化學習在該場景中的描述,哪一項是不正確的?()A.機器人通過與環(huán)境的交互獲得獎勵或懲罰,從而調(diào)整自己的行為策略B.設(shè)計合理的獎勵函數(shù)對于機器人的學習效果至關(guān)重要C.強化學習可以使機器人快速適應新的環(huán)境和任務(wù),無需重新訓練D.機器人在學習過程中可能會經(jīng)歷多次失敗,但通過不斷嘗試最終能夠?qū)W會行走16、在人工智能的智能客服應用中,需要快速準確地回答用戶的問題。假設(shè)用戶的問題類型多樣,包括咨詢、投訴、技術(shù)問題等。為了提高智能客服的回答質(zhì)量和效率,以下哪種技術(shù)或策略是重要的?()A.建立大規(guī)模的問題庫和標準答案B.運用自然語言生成技術(shù)生成回答C.引導用戶提出更簡單的問題D.對復雜問題直接拒絕回答17、人工智能中的遷移學習是一種有效的技術(shù)手段。以下關(guān)于遷移學習的描述,不正確的是()A.遷移學習可以利用已有的預訓練模型和知識,在新的任務(wù)和數(shù)據(jù)上進行微調(diào)B.遷移學習能夠減少新任務(wù)中的數(shù)據(jù)標注工作量和訓練時間C.遷移學習只能在相似的領(lǐng)域和任務(wù)中應用,無法跨越不同的領(lǐng)域D.合理運用遷移學習可以提高模型的泛化能力和性能18、在人工智能的推薦系統(tǒng)中,為用戶提供個性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項是不準確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機推薦D.混合推薦19、人工智能中的語音識別技術(shù)在許多領(lǐng)域都有應用,如語音助手和智能客服。假設(shè)正在改進一個語音識別系統(tǒng)的性能,以下關(guān)于語音識別的描述,正確的是:()A.語音識別的準確率只取決于聲學模型,語言模型對其影響不大B.環(huán)境噪聲對語音識別的結(jié)果沒有顯著影響,系統(tǒng)可以自動過濾噪聲C.不斷優(yōu)化聲學模型和語言模型,并結(jié)合大量的語音數(shù)據(jù)進行訓練,可以提高語音識別的準確率D.語音識別系統(tǒng)不需要考慮不同人的口音和語速差異,能夠統(tǒng)一處理20、在人工智能的圖像識別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應用。假設(shè)要設(shè)計一個用于識別手寫數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個因素對于提高識別準確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量21、假設(shè)要開發(fā)一個能夠在復雜的商業(yè)環(huán)境中進行智能決策支持的人工智能系統(tǒng),例如投資決策或市場策略制定,以下哪種技術(shù)和知識的融合可能是必要的?()A.數(shù)據(jù)分析和領(lǐng)域?qū)<抑RB.機器學習算法和經(jīng)濟學原理C.深度學習模型和管理學理論D.以上都是22、人工智能在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)要開發(fā)一個能夠識別水果種類的圖像識別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預處理的步驟,哪一項是最關(guān)鍵的?()A.對圖像進行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對圖像進行增強和去噪處理,提高圖像質(zhì)量D.隨機打亂圖像的順序,增加數(shù)據(jù)的多樣性23、在人工智能的醫(yī)療影像診斷中,深度學習模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)我們要利用深度學習模型診斷肺部CT影像中的結(jié)節(jié),以下關(guān)于模型訓練的說法,哪一項是正確的?()A.可以使用少量標注數(shù)據(jù)獲得準確的診斷結(jié)果B.模型的泛化能力對于不同醫(yī)院的數(shù)據(jù)不重要C.數(shù)據(jù)增強技術(shù)可以提高模型的魯棒性D.不需要對模型進行驗證和評估24、在人工智能的圖像超分辨率任務(wù)中,假設(shè)需要將低分辨率圖像恢復為高分辨率圖像,同時保持圖像的細節(jié)和清晰度。以下哪種方法通常能夠取得較好的效果?()A.基于深度學習的超分辨率模型,學習圖像的特征和模式B.傳統(tǒng)的插值方法,如雙線性插值C.對低分辨率圖像進行簡單的放大處理D.隨機生成高分辨率圖像25、人工智能中的遷移學習方法可以利用已有的知識和模型來解決新的問題。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓練好的模型應用到小樣本的特定領(lǐng)域圖像分類任務(wù)中。以下關(guān)于遷移學習的描述,哪一項是不準確的?()A.可以將預訓練模型的特征提取部分應用到新任務(wù)中,并在新數(shù)據(jù)上微調(diào)B.遷移學習能夠有效解決新任務(wù)數(shù)據(jù)量不足的問題,提高模型的泛化能力C.直接使用預訓練模型的輸出結(jié)果,無需任何調(diào)整,就能在新任務(wù)中取得好的效果D.選擇合適的預訓練模型和遷移策略對于遷移學習的成功至關(guān)重要26、人工智能在教育領(lǐng)域有潛在的應用,例如個性化學習系統(tǒng)。假設(shè)要為學生提供個性化的學習路徑,以下哪種數(shù)據(jù)對于系統(tǒng)的設(shè)計最為關(guān)鍵?()A.學生的考試成績B.學生的學習時間C.學生的學習風格和偏好D.學校的課程設(shè)置27、人工智能在法律領(lǐng)域的輔助決策中具有一定作用。假設(shè)要利用人工智能協(xié)助法官判斷案件,以下關(guān)于其應用的描述,哪一項是不正確的?()A.分析大量的法律案例和條文,提供相關(guān)的參考和建議B.利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)案件中的潛在規(guī)律和模式C.人工智能的判斷結(jié)果可以直接作為最終的法律裁決,無需法官審查D.幫助法官提高決策的效率和準確性,但最終決策權(quán)仍在法官手中28、在人工智能的發(fā)展歷程中,深度學習技術(shù)的出現(xiàn)帶來了重大突破。假設(shè)我們正在研究圖像識別任務(wù),需要對大量的圖像數(shù)據(jù)進行訓練,以識別不同的物體和場景。深度學習中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在處理圖像數(shù)據(jù)時具有獨特的優(yōu)勢。那么,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項是不正確的?()A.能夠自動提取圖像的特征,減少了人工特征工程的工作量B.可以處理任意大小的圖像輸入,無需對圖像進行預處理C.其訓練過程需要大量的計算資源和時間D.對于復雜的圖像分類任務(wù),準確率通常高于傳統(tǒng)機器學習算法29、在強化學習中,“Q-learning”算法通過估計什么來進行決策?()A.狀態(tài)價值B.動作價值C.策略D.獎勵30、當利用人工智能進行推薦系統(tǒng)的設(shè)計,例如為用戶推薦個性化的電影或音樂,以下哪種技術(shù)可能有助于提高推薦的準確性和新穎性?()A.協(xié)同過濾B.基于內(nèi)容的推薦C.混合推薦D.以上都是二、操作題(本大題共5個小題,共25分)1、(本題5分)基于Python的OpenCV庫和深度學習框架,實現(xiàn)一個車輛牌照識別系統(tǒng)。能夠從不同角度和光照條件下拍攝的車輛圖片中準確識別出牌照號碼,并進行字符分割和識別。2、(本題5分)在Python中,運用和聲搜索算法優(yōu)化一個約束優(yōu)化問題。定義和聲的生成和更新方式,展示算法的求解過程。3、(本題5分)利用Python的PyTorch庫,構(gòu)建一個多層卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,對高分辨率的醫(yī)學影像數(shù)據(jù)進行腫瘤分割。研究不同的損失函數(shù)和優(yōu)化算法對分割精度的影響。4、(本題5分)在PyTorch中,構(gòu)建一個對抗樣本生成模型,對圖像分類模型進行攻擊。分析攻擊的效果和模型的魯棒性,研究防御對抗攻擊的方法。5、(本題5分)利用Scikit-learn中的K近鄰算法,對文本數(shù)據(jù)進行分類,如新聞分類、郵件分類等。提取文本的特征向量,分析不同距離度量和K值對分類結(jié)果的影響,選擇最優(yōu)的參數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論