下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
正方形專題課----對(duì)角互補(bǔ)四邊形一、【知識(shí)精析】四個(gè)結(jié)論中知2求21、∠1=∠2,2、∠C+∠D=180°,3、BD=CD,4、AE=12拓展11,若∠A=∠CDB=90°,AC=AB,求證(1)∠ADC=45°,(2)DC+DB=2DA.2,若∠A=90°,AC=AB,∠ADC=45°求證:DC+DB=2DA.二、例題講解例1、已知:如圖,正方形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O.E、F分別是邊AB、BC上的點(diǎn),若AE=4cm,CF=3cm,且OE⊥OF,則EF的長為_________cm.1、如圖,已知:點(diǎn)D是△ABC的邊BC上一動(dòng)點(diǎn),且AB=AC,DA=DE,∠BAC=∠ADE=α.⑴如圖1,當(dāng)α=60°時(shí),∠BCE=;(圖1)(圖2)(圖3)⑵如圖2,當(dāng)α=90°時(shí),試判斷∠BCE的度數(shù)是否發(fā)生改變,若變化,請(qǐng)指出其變化范圍;若不變化,請(qǐng)求出其值,并給出證明;⑶如圖3,當(dāng)α=120°時(shí),則∠BCE=;例2、在圖1到圖3中,點(diǎn)O是正方形ABCD對(duì)角線AC的中點(diǎn),△MPN為直角三角形,∠MPN=90°.正方形ABCD保持不動(dòng),△MPN沿射線AC向右平移,平移過程中P點(diǎn)始終在射線AC上,且保持PM垂直于直線AB于點(diǎn)E,PN垂直于直線BC于點(diǎn)F.(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),OE與OF的數(shù)量關(guān)系為_________;(2)如圖2,當(dāng)P在線段OC上時(shí),猜想OE與OF有怎樣的數(shù)量關(guān)系與位置關(guān)系?并對(duì)你的猜想結(jié)果給予證明;(3)如圖3,當(dāng)點(diǎn)P在AC的延長線上時(shí),OE與OF的數(shù)量關(guān)系為_________;位置關(guān)系為_________.例3、如圖,正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于Q.(1)如圖1,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫出PB與PQ所滿足的數(shù)量關(guān)系;并加以證明;(2)如圖2,當(dāng)點(diǎn)Q落在DC的延長線上時(shí),猜想并寫出PB與PQ滿足的數(shù)量關(guān)系,請(qǐng)證明你的猜想.例4、如圖,正方形ABCD,點(diǎn)P是對(duì)角線AC上一點(diǎn),連接BP,過P作PQ⊥BP,PQ交CD于Q,連接BQ交AC于G,若AP=,Q為CD中點(diǎn),則下列結(jié)論:①∠PBC=∠PQD;②BP=PQ;③∠BPC=∠BQC;④正方形ABCD的面積是16;其中正確結(jié)論的個(gè)數(shù)是()A.4B.3C.2D.1例5、如圖1,直角∠EPF的頂點(diǎn)和正方形ABCD的頂點(diǎn)C重合,兩直角邊PE,PF分別和AB,AD所在的直線交于點(diǎn)E和F.易得△PBE≌△PDF,故結(jié)論“PE=PF”成立;(1)如圖2,若點(diǎn)P在正方形ABCD的對(duì)角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?說明理由;(2)如圖(3)將(2)中正方形ABCD改為矩形ABCD其他條件不變,若AB=m,BC=n,直接寫出的值.例6、如圖,邊長一定的正方形ABCD,Q為CD上一個(gè)動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過M作MN⊥AQ交BC于點(diǎn)N,作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④為定值.其中一定成立的是()A.①②③B.①②④C.②③④D.①②③④例7、已知,四邊形ABCD是正方形,∠MAN=45°,它的兩邊AM、AN分別交CB、DC與點(diǎn)M、N,連接MN,作AH⊥MN,垂足為點(diǎn)H(1)如圖1,猜想AH與AB有什么數(shù)量關(guān)系?并證明;(2)如圖2,已知∠BAC=45°,AD⊥BC于點(diǎn)D,且BD=2,CD=3,求AD的長;小萍同學(xué)通過觀察圖①發(fā)現(xiàn),△ABM和△AHM關(guān)于AM對(duì)稱,△AHN和△ADN關(guān)于AN對(duì)稱,于是她巧妙運(yùn)用這個(gè)發(fā)現(xiàn),將圖形如圖③進(jìn)行翻折變換,解答了此題.你能根據(jù)小萍同學(xué)的思路解決這個(gè)問題嗎?例8、(1)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN,ND,DH之間的數(shù)量關(guān)系,并說明理由.(3)在圖①中,連接BD分別交AE,AF于點(diǎn)M,N,若EG=4,GF=6,BM=3,求AG,MN的長.例9、如圖,將邊長為4的正方形ABCD沿著折痕EF折疊,使點(diǎn)B落在邊AD的中點(diǎn)G處,那么四邊形BCFE的面積等于_________;若GH與CD交點(diǎn)為I,那么GBI=____________.27.在直角坐標(biāo)系中,直線y=2x+4交x軸于A,交y軸于D(1)以A為直角頂點(diǎn)作等腰直角△AMD,直接寫出點(diǎn)M的坐標(biāo)為_________(2)以AD為邊作正方形ABCD,連BD,P是線段BD上(不與B、D重合)的一點(diǎn),在BD上截取PG=,過G作GF⊥BD,交BC于F,連AP則AP與PF有怎樣的數(shù)量關(guān)系和位置關(guān)系?并證明你的結(jié)論;(3)在(2)中的正方形中,若∠PAG=45°,試判斷線段PD、PG、BG之間有何關(guān)系,并證明你的結(jié)論.例10、如圖,一個(gè)直角三角形的直角頂點(diǎn)P在正方形ABCD的對(duì)角線AC所在的直線上滑動(dòng),并使得一條直角邊始終經(jīng)過B點(diǎn).(1)如圖1,當(dāng)直角三角形的另一條
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《少兒理財(cái)活動(dòng)案例》課件
- 單位管理制度集粹選集【人力資源管理】十篇
- 單位管理制度匯編大全【人事管理篇】
- 單位管理制度合并選集人員管理篇
- 《巫婆的暑假》課件
- 單位管理制度分享大合集【人員管理篇】十篇
- 單位管理制度范例匯編【人員管理】十篇
- 單位管理制度呈現(xiàn)大全【人員管理篇】
- 《行政職業(yè)能力測(cè)驗(yàn)》2022年公務(wù)員考試民和回族土族自治縣預(yù)測(cè)試題含解析
- 《基層干部管理》課件
- 穴位貼敷護(hù)理培訓(xùn)
- 腰椎間盤突出癥護(hù)理查房課件
- 建德海螺二期施工組織設(shè)計(jì)
- 山東省菏澤市2023-2024學(xué)年高一上學(xué)期期末測(cè)試物理試題(解析版)
- 2024年學(xué)校后勤日用品采購合同范本2篇
- DB45T 2866-2024 靈芝菌種制備技術(shù)規(guī)程
- 2024年江蘇省普通高中學(xué)業(yè)水平測(cè)試小高考生物、地理、歷史、政治試卷及答案(綜合版)
- 浙江省杭州市西湖區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末語文試卷
- IEC60335-1(中文)
- 對(duì)于申請(qǐng)?jiān)黾愚k公用房請(qǐng)示
- 姓名代碼查詢
評(píng)論
0/150
提交評(píng)論