新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題14 數(shù)列的通項(xiàng)公式??记蠓ǎń馕霭妫第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題14 數(shù)列的通項(xiàng)公式??记蠓ǎń馕霭妫第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題14 數(shù)列的通項(xiàng)公式??记蠓ǎń馕霭妫第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題14 數(shù)列的通項(xiàng)公式??记蠓ǎń馕霭妫第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)分層訓(xùn)練專題14 數(shù)列的通項(xiàng)公式??记蠓ǎń馕霭妫第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

答案第=page11頁(yè),共=sectionpages22頁(yè)專題14數(shù)列的通項(xiàng)公式??记蠓ā揪毣A(chǔ)】一、單選題1.(2023·四川成都·統(tǒng)考一模)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.512 B.510 C.256 D.254【答案】C【分析】根據(jù)SKIPIF1<0與SKIPIF1<0的關(guān)系,結(jié)合等比數(shù)列的定義、等比數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】由SKIPIF1<0,所以數(shù)列SKIPIF1<0是以2為首項(xiàng),2為公式的等比數(shù)列,于是SKIPIF1<0,故選:C2.(2023·四川攀枝花·統(tǒng)考二模)已知正項(xiàng)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則滿足SKIPIF1<0的n的最小正整數(shù)解為(

)A.15 B.16 C.3 D.4【答案】A【分析】由遞推關(guān)系求得SKIPIF1<0、SKIPIF1<0,根據(jù)SKIPIF1<0關(guān)系可得SKIPIF1<0,由等差數(shù)列定義求出SKIPIF1<0通項(xiàng),最后應(yīng)用對(duì)數(shù)的運(yùn)算性質(zhì)可得SKIPIF1<0,進(jìn)而求SKIPIF1<0對(duì)應(yīng)n的范圍,即可得答案.【詳解】由題設(shè)SKIPIF1<0且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,由上,SKIPIF1<0也成立,故SKIPIF1<0是首項(xiàng)、公差均為1的等差數(shù)列,則SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的n的最小正整數(shù)解為SKIPIF1<0.故選:A3.(2022·陜西咸陽(yáng)·武功縣普集高級(jí)中學(xué)統(tǒng)考模擬預(yù)測(cè))南宋數(shù)學(xué)家楊輝所著的《詳解九章算法商功》中出現(xiàn)了如圖所示的形狀后人稱為“三角垛”(如圖所示的是一個(gè)4層的三角躁),“三角垛”最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…,設(shè)第SKIPIF1<0層有SKIPIF1<0個(gè)球,從上往下SKIPIF1<0層球的總數(shù)為SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先根據(jù)規(guī)律寫出遞推關(guān)系式,即可判斷選項(xiàng)D的正誤;再利用累加法即可求得通項(xiàng)公式,即選項(xiàng)C正誤,求出前7項(xiàng),即可得選項(xiàng)B正誤,求出SKIPIF1<0通項(xiàng)公式,利用裂項(xiàng)相消即可得選項(xiàng)A的正誤.【詳解】解:由題知,第一層有1個(gè)球,第二層有3個(gè)球,即SKIPIF1<0,第三層有6個(gè)球,即SKIPIF1<0,則第四層的球數(shù)為SKIPIF1<0,當(dāng)?shù)赟KIPIF1<0層有SKIPIF1<0個(gè)球時(shí),第SKIPIF1<0層有SKIPIF1<0個(gè)球,所以SKIPIF1<0,故選項(xiàng)D錯(cuò)誤;因?yàn)镾KIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將上述式子相加可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故選項(xiàng)A正確;因?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選項(xiàng)B錯(cuò)誤;因?yàn)镾KIPIF1<0,故選項(xiàng)C錯(cuò)誤.故選:A二、多選題4.(2022·河南開封·統(tǒng)考一模)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.8 B.16 C.32 D.64【答案】C【分析】當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,驗(yàn)證SKIPIF1<0是否適合可得通項(xiàng)公式,代入通項(xiàng)公式求解可得結(jié)果.【詳解】解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,符合上式,SKIPIF1<0數(shù)列SKIPIF1<0的通項(xiàng)公式為:SKIPIF1<0SKIPIF1<0,故選:C.5.(2022·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則SKIPIF1<0(

)A.0 B.50 C.100 D.2525【答案】B【分析】法一:先利用SKIPIF1<0求出SKIPIF1<0,利用累乘法得到SKIPIF1<0,再分組求和;法二:先利用SKIPIF1<0求出SKIPIF1<0,又易知SKIPIF1<0,從而得到SKIPIF1<0為常數(shù)列,求出SKIPIF1<0,再分組求和.【詳解】法一:由于SKIPIF1<0①,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②,①-②,得SKIPIF1<0,即SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0滿足SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0.法二:由于SKIPIF1<0①,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②,①-②,得SKIPIF1<0,即SKIPIF1<0,又易知SKIPIF1<0,所以數(shù)列SKIPIF1<0為常數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0.故選:B.6.(2023·四川內(nèi)江·統(tǒng)考一模)已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖象上,記SKIPIF1<0為SKIPIF1<0的前n項(xiàng)和,則SKIPIF1<0(

)A.3 B.4 C.5 D.6【答案】A【分析】由SKIPIF1<0以及解析式求出SKIPIF1<0,再由SKIPIF1<0得出答案.【詳解】由題得SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0故選:A.7.(2023·全國(guó)·高三專題練習(xí))已知數(shù)列{SKIPIF1<0}滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列{SKIPIF1<0}第2022項(xiàng)為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先通過條件得到SKIPIF1<0,再利用累加法即可求解.【詳解】解:由SKIPIF1<0.得SKIPIF1<0,又SKIPIF1<0,可得SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……,SKIPIF1<0,將上式相加得SKIPIF1<0,故選:A.8.(2023·全國(guó)·高三專題練習(xí))已知正項(xiàng)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,若數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.200 D.400【答案】C【分析】利用SKIPIF1<0關(guān)系及等差數(shù)列的定義求SKIPIF1<0的通項(xiàng)公式,進(jìn)而可得SKIPIF1<0,根據(jù)正弦函數(shù)的周期性并討論SKIPIF1<0,求得SKIPIF1<0,即可求SKIPIF1<0.【詳解】由題設(shè)SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0為正項(xiàng)數(shù)列,則SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為1,公差為2的等差數(shù)列,則SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0;則SKIPIF1<0,由SKIPIF1<0.故選:C9.(2023·黑龍江·黑龍江實(shí)驗(yàn)中學(xué)??家荒#┮阎猄KIPIF1<0是等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,則下列說(shuō)法正確的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】AD【分析】根據(jù)SKIPIF1<0與SKIPIF1<0的關(guān)系以及SKIPIF1<0是等比數(shù)列,可求得SKIPIF1<0,SKIPIF1<0.進(jìn)而判斷數(shù)列SKIPIF1<0是以8為首項(xiàng),4為公比的等比數(shù)列,根據(jù)等比數(shù)列前SKIPIF1<0項(xiàng)和公式即可判斷C、D項(xiàng).【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.因?yàn)镾KIPIF1<0是等比數(shù)列,所以需滿足SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.所以,A項(xiàng)正確,B項(xiàng)錯(cuò)誤;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0是以8為首項(xiàng),4為公比的等比數(shù)列.所以SKIPIF1<0,所以C項(xiàng)錯(cuò)誤,D項(xiàng)正確.故選:AD.10.(2022秋·山西·高三統(tǒng)考期中)已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,則下列正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】根據(jù)通項(xiàng)公式即可作出判斷.【詳解】對(duì)于A,6是偶數(shù),則SKIPIF1<0,A錯(cuò)誤;對(duì)于B,SKIPIF1<0,B正確;對(duì)于C,SKIPIF1<0,C正確;對(duì)于D,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D錯(cuò)誤.故選:BC.11.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)之和,且滿足SKIPIF1<0,則下列說(shuō)法正確的是(

)A.SKIPIF1<0為等差數(shù)列 B.若SKIPIF1<0為等差數(shù)列,則公差為2C.SKIPIF1<0可能為等比數(shù)列 D.SKIPIF1<0的最小值為0,最大值為20【答案】CD【分析】當(dāng)SKIPIF1<0時(shí),解出SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由退位相減法求得SKIPIF1<0,討論SKIPIF1<0和SKIPIF1<0,求出數(shù)列SKIPIF1<0的通項(xiàng),再依次判斷即可.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,整理得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,可得SKIPIF1<0此時(shí)為等差數(shù)列,若SKIPIF1<0,SKIPIF1<0,可得數(shù)列SKIPIF1<0為等比數(shù)列,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,數(shù)列SKIPIF1<0為等差數(shù)列,若SKIPIF1<0,可得SKIPIF1<0,若SKIPIF1<0,可得SKIPIF1<0;故A錯(cuò)誤;B錯(cuò)誤;C正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;故D正確.故選:CD.12.(2022秋·黑龍江綏化·高三??茧A段練習(xí))南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中出現(xiàn)了如圖所示的形狀,后人稱為“三角垛”(下圖所示的是一個(gè)4層的三角跺).“三角垛”最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…,設(shè)第n層有SKIPIF1<0個(gè)球,從上往下n層球的球的總數(shù)為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】根據(jù)題意求得SKIPIF1<0,進(jìn)而可得SKIPIF1<0,利用累加法求出SKIPIF1<0即可判斷選項(xiàng)A、C;計(jì)算前7項(xiàng)的和即可判斷B;利用裂項(xiàng)相消求和法即可判斷D.【詳解】由題意得,SKIPIF1<0,以上n個(gè)式子累加可得SKIPIF1<0,又SKIPIF1<0滿足上式,所以SKIPIF1<0,故A錯(cuò)誤;則SKIPIF1<0,得SKIPIF1<0,故B正確;有SKIPIF1<0,故C正確;由SKIPIF1<0,得SKIPIF1<0,故D正確.故選:BCD.三、填空題13.(2023·全國(guó)·校聯(lián)考模擬預(yù)測(cè))記函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù)為SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【分析】求導(dǎo)后可得SKIPIF1<0,結(jié)合對(duì)數(shù)運(yùn)算法則可求得結(jié)果.【詳解】SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.14.(2023秋·江蘇揚(yáng)州·高三??计谀┮阎獢?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_____________.【答案】5149【分析】用SKIPIF1<0求出SKIPIF1<0的遞推,然后根據(jù)遞推求通項(xiàng),根據(jù)SKIPIF1<0,分奇偶項(xiàng)來(lái)找規(guī)律求解.【詳解】∵SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.∴SKIPIF1<0.……SKIPIF1<0,上式累加得SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時(shí)也滿足,故SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,③由①②得SKIPIF1<0,由②③得SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:514915.(2023·江蘇蘇州·蘇州中學(xué)??寄M預(yù)測(cè))數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0__________【答案】SKIPIF1<0【分析】由已知整理得SKIPIF1<0,先利用累乘法求數(shù)列SKIPIF1<0的通項(xiàng),再利用錯(cuò)位相減法求其前2021項(xiàng)的和,從而得到結(jié)果.【詳解】由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.16.(2022·上海青浦·統(tǒng)考一模)已知數(shù)列SKIPIF1<0中,SKIPIF1<0,記SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0.若對(duì)任意SKIPIF1<0,都有SKIPIF1<0,則首項(xiàng)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】根據(jù)給定的遞推公式,分段求出數(shù)列SKIPIF1<0的表達(dá)式,再利用給定不等關(guān)系列出不等式組求解作答.【詳解】SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,于是得SKIPIF1<0,有SKIPIF1<0,因此SKIPIF1<0,數(shù)列SKIPIF1<0分別是以SKIPIF1<0為首項(xiàng),6為公差的等差數(shù)列,而SKIPIF1<0,SKIPIF1<0,即有SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,則有SKIPIF1<0,于是得SKIPIF1<0,SKIPIF1<0,因?qū)θ我釹KIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,從而得SKIPIF1<0,解得SKIPIF1<0,所以首項(xiàng)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】思路點(diǎn)睛:給出SKIPIF1<0與SKIPIF1<0的遞推關(guān)系,求SKIPIF1<0,常用思路是:一是利用SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為SKIPIF1<0的遞推關(guān)系,先求出SKIPIF1<0與n之間的關(guān)系,再求SKIPIF1<0.四、解答題17.(2023·云南紅河·統(tǒng)考一模)已知正項(xiàng)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式:(2)若SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【分析】(1)利用SKIPIF1<0,SKIPIF1<0的關(guān)系,結(jié)合已知條件以及等差數(shù)列的通項(xiàng)公式即可求得結(jié)果;(2)根據(jù)(1)中所求,利用裂項(xiàng)求和法求出SKIPIF1<0,即可證明.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),可知SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,兩式相減,得SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),1為公差的等差數(shù)列,所以SKIPIF1<0.(2)由(1)知SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.18.(2023·河南鄭州·統(tǒng)考一模)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)用數(shù)列中前SKIPIF1<0項(xiàng)和SKIPIF1<0與項(xiàng)SKIPIF1<0的關(guān)系求解;(2)先寫出奇數(shù)項(xiàng)、偶數(shù)項(xiàng)的通項(xiàng)公式,再按奇數(shù)項(xiàng)、偶數(shù)項(xiàng)分組求和.【詳解】(1)由題意SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0兩式相減得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)也成立.所以數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.(2)根據(jù)題意,得SKIPIF1<0所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0【提能力】一、單選題19.(2022·浙江·統(tǒng)考高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】先通過遞推關(guān)系式確定SKIPIF1<0除去SKIPIF1<0,其他項(xiàng)都在SKIPIF1<0范圍內(nèi),再利用遞推公式變形得到SKIPIF1<0,累加可求出SKIPIF1<0,得出SKIPIF1<0,再利用SKIPIF1<0,累加可求出SKIPIF1<0,再次放縮可得出SKIPIF1<0.【詳解】∵SKIPIF1<0,易得SKIPIF1<0,依次類推可得SKIPIF1<0由題意,SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,累加可得SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,累加可得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0;綜上:SKIPIF1<0.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解決本題的關(guān)鍵是利用遞推關(guān)系進(jìn)行合理變形放縮.

20.(2021·浙江·統(tǒng)考高考真題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.記數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】顯然可知,SKIPIF1<0,利用倒數(shù)法得到SKIPIF1<0,再放縮可得SKIPIF1<0,由累加法可得SKIPIF1<0,進(jìn)而由SKIPIF1<0局部放縮可得SKIPIF1<0,然后利用累乘法求得SKIPIF1<0,最后根據(jù)裂項(xiàng)相消法即可得到SKIPIF1<0,從而得解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0SKIPIF1<0,即SKIPIF1<0根據(jù)累加法可得,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),SKIPIF1<0SKIPIF1<0,由累乘法可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),由裂項(xiàng)求和法得:所以SKIPIF1<0,即SKIPIF1<0.故選:A.【點(diǎn)睛】本題解題關(guān)鍵是通過倒數(shù)法先找到SKIPIF1<0的不等關(guān)系,再由累加法可求得SKIPIF1<0,由題目條件可知要證SKIPIF1<0小于某數(shù),從而通過局部放縮得到SKIPIF1<0的不等關(guān)系,改變不等式的方向得到SKIPIF1<0,最后由裂項(xiàng)相消法求得SKIPIF1<0.21.(2018·陜西安康·統(tǒng)考三模)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.2525 C.SKIPIF1<0 D.2526【答案】C【分析】由已知得出數(shù)列SKIPIF1<0為等差數(shù)列,求出通項(xiàng)公式SKIPIF1<0后,累加法求得SKIPIF1<0.【詳解】解析:由已知SKIPIF1<0,∴數(shù)列SKIPIF1<0為等差數(shù)列,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0.故選:C.22.(2022秋·山東濰坊·高三校考階段練習(xí))已知數(shù)列SKIPIF1<0和SKIPIF1<0首項(xiàng)均為1,且SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0(

)A.2019 B.SKIPIF1<0 C.4037 D.SKIPIF1<0【答案】D【分析】先利用條件得到SKIPIF1<0,進(jìn)而得到SKIPIF1<0,代入SKIPIF1<0,利用SKIPIF1<0與SKIPIF1<0的關(guān)系推得SKIPIF1<0是等差數(shù)列,進(jìn)而求出SKIPIF1<0,代入即可求得結(jié)果.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,另外:SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0是首項(xiàng)為1,公差為2的等差數(shù)列,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0.故選:D.23.(2022秋·江蘇鎮(zhèn)江·高三揚(yáng)中市第二高級(jí)中學(xué)??计谀?022年第二十四屆北京冬奧會(huì)開幕式上由96片小雪花組成的大雪花驚艷了全世界,數(shù)學(xué)中也有一朵美麗的雪花一“科赫雪花”.它可以這樣畫,任意畫一個(gè)正三角形SKIPIF1<0,并把每一邊三等分:取三等分后的一邊中間一段為邊向外作正三角形,并把這“中間一段”擦掉,形成雪花曲線SKIPIF1<0;重復(fù)上述兩步,畫出更小的三角形.一直重復(fù),直到無(wú)窮,形成雪花曲線,SKIPIF1<0.設(shè)雪花曲線SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0,邊數(shù)為SKIPIF1<0,周長(zhǎng)為SKIPIF1<0,面積為SKIPIF1<0,若SKIPIF1<0,則下列說(shuō)法正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0均構(gòu)成等比數(shù)列 D.SKIPIF1<0【答案】B【分析】根據(jù)已知寫出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的通項(xiàng)公式且SKIPIF1<0時(shí)SKIPIF1<0,應(yīng)用累加法求SKIPIF1<0通項(xiàng),進(jìn)而判斷各選項(xiàng)的正誤.【詳解】據(jù)題意知:SKIPIF1<0,∴SKIPIF1<0,A錯(cuò)誤;SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,D錯(cuò)誤;∴SKIPIF1<0SKIPIF1<0,由SKIPIF1<0也滿足上式,則SKIPIF1<0,所以SKIPIF1<0不構(gòu)成等比數(shù)列,C錯(cuò)誤;由上,SKIPIF1<0,則SKIPIF1<0,B正確.故選:B.24.(2022·全國(guó)·高三專題練習(xí))“中國(guó)剩余定理”又稱“孫子定理”,最早可見于我國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》.1852年,英國(guó)傳教士偉烈亞力將該解法傳至歐洲,1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.此定理講的是關(guān)于整除的問題,現(xiàn)將SKIPIF1<0到SKIPIF1<0這SKIPIF1<0個(gè)數(shù)中,能被SKIPIF1<0除余SKIPIF1<0且被SKIPIF1<0除余SKIPIF1<0的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列SKIPIF1<0,則該數(shù)列共有(

)A.SKIPIF1<0項(xiàng) B.SKIPIF1<0項(xiàng) C.SKIPIF1<0項(xiàng) D.SKIPIF1<0項(xiàng)【答案】B【分析】由已知可得能被SKIPIF1<0除余SKIPIF1<0且被SKIPIF1<0除余SKIPIF1<0的數(shù)即為能被SKIPIF1<0除余SKIPIF1<0,進(jìn)而得通項(xiàng)及項(xiàng)數(shù).【詳解】由已知可得SKIPIF1<0既能被SKIPIF1<0整除,也能被SKIPIF1<0整除,故SKIPIF1<0能被SKIPIF1<0整除,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故共SKIPIF1<0項(xiàng),故選:B.25.(2022·全國(guó)·高三專題練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則下列結(jié)論錯(cuò)誤的是(

)A.SKIPIF1<0 B.SKIPIF1<0是等比數(shù)列C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】推導(dǎo)出數(shù)列SKIPIF1<0是等差數(shù)列,確定該數(shù)列的首項(xiàng)和公差,可求得SKIPIF1<0的表達(dá)式,可判斷C選項(xiàng);利用等差中項(xiàng)的性質(zhì)可判斷A選項(xiàng);利用等比數(shù)列的定義可判斷B選項(xiàng);計(jì)算出SKIPIF1<0、SKIPIF1<0的值,可判斷D選項(xiàng).【詳解】由SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,以此類推可知,對(duì)任意的SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,所以,數(shù)列SKIPIF1<0是等差數(shù)列,且該數(shù)列的首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,所以,SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,C對(duì);SKIPIF1<0,所以,數(shù)列SKIPIF1<0是等比數(shù)列,B對(duì);由等差中項(xiàng)的性質(zhì)可得SKIPIF1<0,A對(duì);由上可知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,D錯(cuò).故選:D.26.(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0表示不超過x的最大整數(shù)(例如SKIPIF1<0,SKIPIF1<0).則SKIPIF1<0(

)A.2018 B.2019 C.2020 D.2021【答案】D【分析】由題設(shè)得SKIPIF1<0是首項(xiàng)為4,公差為2的等差數(shù)列,可得SKIPIF1<0,再應(yīng)用累加法求SKIPIF1<0的通項(xiàng)公式,最后求SKIPIF1<0結(jié)合函數(shù)新定義得SKIPIF1<0,即可求目標(biāo)式結(jié)果.【詳解】由題設(shè),SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0是首項(xiàng)為4,公差為2的等差數(shù)列,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<02021.故選:D【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:構(gòu)造數(shù)列SKIPIF1<0并求通項(xiàng)公式,再由累加法求SKIPIF1<0的通項(xiàng)公式,結(jié)合函數(shù)新定義求目標(biāo)式的值.二、多選題(共0分)27.(2023·全國(guó)·高三專題練習(xí))數(shù)列SKIPIF1<0首項(xiàng)SKIPIF1<0,對(duì)一切正整數(shù)SKIPIF1<0,都有SKIPIF1<0,則(

)A.對(duì)一切正整數(shù)SKIPIF1<0都有SKIPIF1<0 B.?dāng)?shù)列SKIPIF1<0單調(diào)遞減C.存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0 D.SKIPIF1<0都是數(shù)列SKIPIF1<0的項(xiàng)【答案】ABD【分析】由題可得SKIPIF1<0,進(jìn)而可得SKIPIF1<0,然后逐項(xiàng)分析即得.【詳解】對(duì)于A,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為1,公差為1的等差數(shù)列,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,故A正確;對(duì)于B,由SKIPIF1<0,得SKIPIF1<0,故B正確;對(duì)于C,因?yàn)閷?duì)任意正整數(shù)SKIPIF1<0都有SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以不存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0都是數(shù)列SKIPIF1<0的項(xiàng),故D正確.故選:ABD.28.(2022秋·湖南岳陽(yáng)·高三??茧A段練習(xí))設(shè)首項(xiàng)為1的數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0SKIPIF1<0,則下列結(jié)論正確的是()A.?dāng)?shù)列SKIPIF1<0為等比數(shù)列B.?dāng)?shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0為等比數(shù)列D.?dāng)?shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0【答案】AD【分析】由條件找到SKIPIF1<0可判斷A正確,由A可求得SKIPIF1<0的通項(xiàng)公式,利用分組求和可得D正確,由SKIPIF1<0的通項(xiàng)公式可求得SKIPIF1<0的通項(xiàng)公式,進(jìn)而可確定CD錯(cuò)誤.【詳解】SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0數(shù)列SKIPIF1<0是首項(xiàng)公比都為SKIPIF1<0的等比數(shù)列,故選項(xiàng)A正確.又SKIPIF1<0SKIPIF1<0所以數(shù)列SKIPIF1<0的前SKIPIF1<0和為SKIPIF1<0,故選項(xiàng)D正確.又因?yàn)镾KIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故選項(xiàng)B錯(cuò)誤.SKIPIF1<0SKIPIF1<0所以數(shù)列SKIPIF1<0不是等比數(shù)列.故選項(xiàng)C錯(cuò)誤.綜上,故選:AD29.(2021·全國(guó)·高三專題練習(xí))斐波那契螺旋線,也稱“黃金螺旋”,是根據(jù)斐波那契數(shù)列畫出來(lái)的螺旋曲線,自然界中存在許多斐波那契螺旋線的圖案,是自然界最完美的經(jīng)典黃金比例.作圖規(guī)則是在以斐波那契數(shù)為邊的正方形拼成的長(zhǎng)方形,然后在正方形里面畫一個(gè)90度的扇形,連起來(lái)的弧線就是斐波那契螺旋線.它來(lái)源于斐波那契數(shù)列,又稱為黃金分割數(shù)列.現(xiàn)將斐波那契數(shù)列記為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,邊長(zhǎng)為斐波那契數(shù)SKIPIF1<0的正方形所對(duì)應(yīng)扇形面積記為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【分析】根據(jù)數(shù)列的遞推公式可判斷選項(xiàng)A,再根據(jù)累加法計(jì)算判斷選項(xiàng)B,根據(jù)扇形的面積公式判斷選項(xiàng)C,再次應(yīng)用累加法及遞推公式判斷選項(xiàng)D.【詳解】由遞推公式SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,A選項(xiàng)正確;又由遞推公式可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,類似的有SKIPIF1<0,累加得SKIPIF1<0,故SKIPIF1<0錯(cuò)誤,B選項(xiàng)錯(cuò)誤;由題可知扇形面積SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0錯(cuò)誤,C選項(xiàng)錯(cuò)誤;由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,類似的有SKIPIF1<0,累加得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0正確,D選項(xiàng)正確;故選:AD.30.(2022·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則下列結(jié)論中正確的有(

)A.SKIPIF1<0是遞增數(shù)列 B.SKIPIF1<0是等比數(shù)列C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】將遞推公式兩邊同時(shí)取指數(shù),變形得到SKIPIF1<0,構(gòu)造等比數(shù)列可證SKIPIF1<0為等比數(shù)列,求解出SKIPIF1<0通項(xiàng)公式則可判斷A選項(xiàng);根據(jù)SKIPIF1<0判斷B選項(xiàng);根據(jù)SKIPIF1<0的通項(xiàng)公式以及對(duì)數(shù)的運(yùn)算法則計(jì)算SKIPIF1<0的正負(fù)并判斷C選項(xiàng);將SKIPIF1<0的通項(xiàng)公式放縮得到SKIPIF1<0,由此進(jìn)行求和并判斷D選項(xiàng).【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0在SKIPIF1<0時(shí)單調(diào)遞增,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,所以SKIPIF1<0是遞增數(shù)列,故A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0不是等比數(shù)列,故B錯(cuò)誤.因?yàn)镾KIPIF1<0SKIPIF1<0,而SKIPIF1<0SKIPIF1<0,從而SKIPIF1<0,于是,SKIPIF1<0,故C正確.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故D正確.故選:ACD.【點(diǎn)睛】思路點(diǎn)睛:數(shù)列SKIPIF1<0單調(diào)性的一般判斷步驟:(1)先計(jì)算SKIPIF1<0的結(jié)果,然后與SKIPIF1<0比較大?。ㄒ部梢杂?jì)算SKIPIF1<0的值,然后與SKIPIF1<0比較大小,但要注意項(xiàng)的符號(hào));(2)下結(jié)論:若SKIPIF1<0,則為遞增數(shù)列;若SKIPIF1<0,則為遞減數(shù)列;若SKIPIF1<0,則為常數(shù)列.三、填空題(共0分)31.(2022·陜西西安·西安中學(xué)??寄M預(yù)測(cè))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前100項(xiàng)和SKIPIF1<0______.【答案】SKIPIF1<0【分析】疊加法求解SKIPIF1<0,再裂項(xiàng)相消法求和即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0時(shí),SKIPIF1<0.∴SKIPIF1<0(SKIPIF1<0),當(dāng)SKIPIF1<0時(shí)SKIPIF1<0也滿足上式,∴SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論