




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)華中農(nóng)業(yè)大學(xué)《機(jī)器學(xué)習(xí)A實(shí)驗(yàn)》
2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在自然語(yǔ)言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是2、在進(jìn)行特征工程時(shí),如果特征之間存在共線性,即一個(gè)特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關(guān)特征B.對(duì)特征進(jìn)行主成分分析C.對(duì)特征進(jìn)行標(biāo)準(zhǔn)化D.以上都可以3、在一個(gè)信用評(píng)估的問(wèn)題中,需要根據(jù)個(gè)人的信用記錄、收入、債務(wù)等信息評(píng)估其信用風(fēng)險(xiǎn)。以下哪種模型評(píng)估指標(biāo)可能是最重要的?()A.準(zhǔn)確率(Accuracy),衡量正確分類(lèi)的比例,但在不平衡數(shù)據(jù)集中可能不準(zhǔn)確B.召回率(Recall),關(guān)注正例的識(shí)別能力,但可能導(dǎo)致誤判增加C.F1分?jǐn)?shù),綜合考慮準(zhǔn)確率和召回率,但對(duì)不同類(lèi)別的權(quán)重相同D.受試者工作特征曲線下面積(AUC-ROC),能夠評(píng)估模型在不同閾值下的性能,對(duì)不平衡數(shù)據(jù)較穩(wěn)健4、在機(jī)器學(xué)習(xí)中,偏差-方差權(quán)衡(Bias-VarianceTradeoff)描述的是()A.模型的復(fù)雜度與性能的關(guān)系B.訓(xùn)練誤差與測(cè)試誤差的關(guān)系C.過(guò)擬合與欠擬合的關(guān)系D.以上都是5、在一個(gè)多分類(lèi)問(wèn)題中,如果類(lèi)別之間存在層次關(guān)系,以下哪種分類(lèi)方法可以考慮這種層次結(jié)構(gòu)?()A.層次分類(lèi)B.一對(duì)一分類(lèi)C.一對(duì)多分類(lèi)D.以上方法都可以6、在進(jìn)行深度學(xué)習(xí)模型的訓(xùn)練時(shí),優(yōu)化算法對(duì)模型的收斂速度和性能有重要影響。假設(shè)我們正在訓(xùn)練一個(gè)多層感知機(jī)(MLP)模型。以下關(guān)于優(yōu)化算法的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)梯度下降(SGD)算法是一種常用的優(yōu)化算法,通過(guò)不斷調(diào)整模型參數(shù)來(lái)最小化損失函數(shù)B.動(dòng)量(Momentum)方法可以加速SGD的收斂,減少震蕩C.Adagrad算法根據(jù)每個(gè)參數(shù)的歷史梯度自適應(yīng)地調(diào)整學(xué)習(xí)率,對(duì)稀疏特征效果較好D.所有的優(yōu)化算法在任何情況下都能使模型快速收斂到最優(yōu)解,不需要根據(jù)模型和數(shù)據(jù)特點(diǎn)進(jìn)行選擇7、在一個(gè)分類(lèi)問(wèn)題中,如果類(lèi)別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹(shù)C.樸素貝葉斯D.隨機(jī)森林8、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),例如檢測(cè)網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類(lèi)的方法9、在集成學(xué)習(xí)中,Adaboost算法通過(guò)調(diào)整樣本的權(quán)重來(lái)訓(xùn)練多個(gè)弱分類(lèi)器。如果一個(gè)樣本在之前的分類(lèi)器中被錯(cuò)誤分類(lèi),它的權(quán)重會(huì)()A.保持不變B.減小C.增大D.隨機(jī)變化10、想象一個(gè)圖像分類(lèi)的競(jìng)賽,要求在有限的計(jì)算資源和時(shí)間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過(guò)對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時(shí)C.模型壓縮,減少模型參數(shù)和計(jì)算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個(gè)模型的預(yù)測(cè)結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高11、假設(shè)正在研究一個(gè)語(yǔ)音合成任務(wù),需要生成自然流暢的語(yǔ)音。以下哪種技術(shù)在語(yǔ)音合成中起到關(guān)鍵作用?()A.聲碼器B.文本到語(yǔ)音轉(zhuǎn)換模型C.語(yǔ)音韻律模型D.以上技術(shù)都很重要12、在一個(gè)異常檢測(cè)的任務(wù)中,數(shù)據(jù)分布呈現(xiàn)多峰且存在離群點(diǎn)。以下哪種異常檢測(cè)算法可能表現(xiàn)較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現(xiàn)局部密度差異較大的異常點(diǎn),但對(duì)參數(shù)敏感B.一類(lèi)支持向量機(jī)(One-ClassSVM),適用于高維數(shù)據(jù),但對(duì)數(shù)據(jù)分布的假設(shè)較強(qiáng)C.基于聚類(lèi)的異常檢測(cè),將遠(yuǎn)離聚類(lèi)中心的點(diǎn)視為異常,但聚類(lèi)效果對(duì)結(jié)果影響較大D.以上算法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)選擇合適的方法或進(jìn)行組合13、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)視頻數(shù)據(jù)進(jìn)行分析和理解。以下哪種方法可以將視頻數(shù)據(jù)轉(zhuǎn)換為適合機(jī)器學(xué)習(xí)模型處理的形式?()A.提取關(guān)鍵幀B.視頻編碼C.光流計(jì)算D.以上方法都可以14、在一個(gè)分類(lèi)問(wèn)題中,如果數(shù)據(jù)集中存在多個(gè)類(lèi)別,且類(lèi)別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類(lèi)邏輯回歸B.決策樹(shù)C.層次分類(lèi)算法D.支持向量機(jī)15、在處理文本分類(lèi)任務(wù)時(shí),除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)模型也表現(xiàn)出色。假設(shè)我們要對(duì)新聞文章進(jìn)行分類(lèi)。以下關(guān)于文本分類(lèi)模型的描述,哪一項(xiàng)是不正確的?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體如長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)和門(mén)控循環(huán)單元(GRU)能夠處理文本的序列信息B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)也可以應(yīng)用于文本分類(lèi),通過(guò)卷積操作提取文本的局部特征C.Transformer架構(gòu)在處理長(zhǎng)文本時(shí)性能優(yōu)于RNN和CNN,但其計(jì)算復(fù)雜度較高D.深度學(xué)習(xí)模型在文本分類(lèi)任務(wù)中總是比傳統(tǒng)機(jī)器學(xué)習(xí)算法(如樸素貝葉斯、支持向量機(jī))效果好16、想象一個(gè)無(wú)人駕駛汽車(chē)的環(huán)境感知任務(wù),需要識(shí)別道路、車(chē)輛、行人等對(duì)象。以下哪種機(jī)器學(xué)習(xí)方法可能是最關(guān)鍵的?()A.目標(biāo)檢測(cè)算法,如FasterR-CNN或YOLO,能夠快速準(zhǔn)確地識(shí)別多個(gè)對(duì)象,但對(duì)小目標(biāo)檢測(cè)可能存在挑戰(zhàn)B.語(yǔ)義分割算法,對(duì)圖像進(jìn)行像素級(jí)的分類(lèi),但計(jì)算量較大C.實(shí)例分割算法,不僅區(qū)分不同類(lèi)別,還區(qū)分同一類(lèi)別中的不同個(gè)體,但模型復(fù)雜D.以上三種方法結(jié)合使用,根據(jù)具體場(chǎng)景和需求進(jìn)行選擇和優(yōu)化17、在一個(gè)工業(yè)生產(chǎn)的質(zhì)量控制場(chǎng)景中,需要通過(guò)機(jī)器學(xué)習(xí)來(lái)實(shí)時(shí)監(jiān)測(cè)產(chǎn)品的質(zhì)量參數(shù),及時(shí)發(fā)現(xiàn)異常。數(shù)據(jù)具有高維度、動(dòng)態(tài)變化和噪聲等特點(diǎn)。以下哪種監(jiān)測(cè)和分析方法可能是最合適的?()A.基于主成分分析(PCA)的降維方法,找出主要的影響因素,但對(duì)異常的敏感度可能較低B.采用孤立森林算法,專(zhuān)門(mén)用于檢測(cè)異常數(shù)據(jù)點(diǎn),但對(duì)于高維數(shù)據(jù)效果可能不穩(wěn)定C.運(yùn)用自組織映射(SOM)網(wǎng)絡(luò),能夠?qū)?shù)據(jù)進(jìn)行聚類(lèi)和可視化,但實(shí)時(shí)性可能不足D.利用基于深度學(xué)習(xí)的自動(dòng)編碼器(Autoencoder),學(xué)習(xí)正常數(shù)據(jù)的模式,對(duì)異常數(shù)據(jù)有較好的檢測(cè)能力,但訓(xùn)練和計(jì)算成本較高18、在一個(gè)回歸問(wèn)題中,如果需要考慮多個(gè)輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以19、假設(shè)正在開(kāi)發(fā)一個(gè)用于圖像分割的機(jī)器學(xué)習(xí)模型。以下哪種損失函數(shù)通常用于評(píng)估圖像分割的效果?()A.交叉熵?fù)p失B.均方誤差損失C.Dice損失D.以上損失函數(shù)都可能使用20、假設(shè)正在研究一個(gè)文本生成任務(wù),例如生成新聞文章。以下哪種深度學(xué)習(xí)模型架構(gòu)在自然語(yǔ)言生成中表現(xiàn)出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)C.門(mén)控循環(huán)單元(GRU)D.以上模型都常用于文本生成二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡(jiǎn)述在物流領(lǐng)域,路徑規(guī)劃中機(jī)器學(xué)習(xí)的應(yīng)用。2、(本題5分)說(shuō)明機(jī)器學(xué)習(xí)在基因組學(xué)中的基因定位。3、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在電商中的客戶行為分析。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用語(yǔ)音識(shí)別技術(shù)開(kāi)發(fā)一個(gè)智能語(yǔ)音助手,實(shí)現(xiàn)語(yǔ)音指令的識(shí)別和響應(yīng)。2、(本題5分)通過(guò)神經(jīng)網(wǎng)絡(luò)模型對(duì)醫(yī)療影像進(jìn)行診斷。3、(本題5分)使用強(qiáng)化學(xué)習(xí)算法訓(xùn)練智能體進(jìn)行飛行模擬。4、(本題5分)使用Adaboost算
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 修身·處世·悟道-百家言:原文+譯文
- 2025年教授智力測(cè)試題及答案
- 2025年事業(yè)編內(nèi)科面試題及答案
- 2025年森林報(bào)春夏測(cè)試題及答案
- 2025年管工進(jìn)廠考試題及答案
- 2025年設(shè)備運(yùn)維面試題及答案
- 機(jī)械工程師試題復(fù)習(xí)測(cè)試卷附答案
- 2025年車(chē)工面試試題及答案
- 2025年國(guó)際專(zhuān)項(xiàng)面試試題及答案
- 2025年人美版美術(shù)測(cè)試題及答案
- 幼兒園《認(rèn)識(shí)醫(yī)生和護(hù)士》課件
- 2024版心肺復(fù)蘇急救知識(shí)培訓(xùn)
- G -B- 16914-2023 燃?xì)馊紵骶甙踩夹g(shù)條件(正式版)
- 壓瘡的分期與護(hù)理(模板)
- 2024年遼寧醫(yī)藥職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)必考題
- JB-QGL-TX3016AJB-QTL-TX3016A火災(zāi)報(bào)警控制器安裝使用說(shuō)明書(shū)
- 《臺(tái)海危機(jī)》課件
- 部編版小學(xué)語(yǔ)文一年級(jí)下冊(cè)第三單元大單元教學(xué)設(shè)計(jì)教材分析
- MOOC 數(shù)據(jù)庫(kù)系統(tǒng)(中):建模與設(shè)計(jì)-哈爾濱工業(yè)大學(xué) 中國(guó)大學(xué)慕課答案
- 2024年湖南食品藥品職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及答案解析
- 2024年江蘇醫(yī)藥職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論