版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西防城港市2025屆高考數(shù)學(xué)押題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.2.已知非零向量,滿足,,則與的夾角為()A. B. C. D.3.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.4.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.175.過雙曲線的右焦點(diǎn)F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點(diǎn),則雙曲線C的離心率為()A. B. C.2 D.6.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.7.已知正項(xiàng)等比數(shù)列滿足,若存在兩項(xiàng),,使得,則的最小值為().A.16 B. C.5 D.48.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題9.如圖,中,點(diǎn)D在BC上,,將沿AD旋轉(zhuǎn)得到三棱錐,分別記,與平面ADC所成角為,,則,的大小關(guān)系是()A. B.C.,兩種情況都存在 D.存在某一位置使得10.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.11.函數(shù)f(x)=2x-3A.[32C.[3212.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,則該市的任意位申請(qǐng)人中,恰好有人申請(qǐng)小區(qū)房源的概率是______.(用數(shù)字作答)14.如圖是九位評(píng)委打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均分為_______.15.在中,,,則_________.16.過且斜率為的直線交拋物線于兩點(diǎn),為的焦點(diǎn)若的面積等于的面積的2倍,則的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,且,求證:;(2)若時(shí),恒有,求的最大值.18.(12分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對(duì)任意的,恒有.19.(12分)已知函數(shù)是自然對(duì)數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.20.(12分)如圖,在棱長(zhǎng)為的正方形中,,分別為,邊上的中點(diǎn),現(xiàn)以為折痕將點(diǎn)旋轉(zhuǎn)至點(diǎn)的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.21.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點(diǎn),.(1)求證:平面;(2)求證:.22.(10分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.2、B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.3、A【解析】
設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.【點(diǎn)睛】本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.4、C【解析】
首先根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:∵,∴當(dāng)時(shí),滿足,∴實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.5、C【解析】
由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)椋訤是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過雙曲線C的左頂點(diǎn),所以,即,則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題.6、B【解析】
由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點(diǎn)的坐標(biāo),然后根據(jù)分析列出一個(gè)含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點(diǎn),使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點(diǎn)睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個(gè)不等式對(duì)應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點(diǎn),然后得到一個(gè)含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.7、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設(shè)等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故選:D.【點(diǎn)睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識(shí),是一道中檔題.8、D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.9、A【解析】
根據(jù)題意作出垂線段,表示出所要求得、角,分別表示出其正弦值進(jìn)行比較大小,從而判斷出角的大小,即可得答案.【詳解】由題可得過點(diǎn)作交于點(diǎn),過作的垂線,垂足為,則易得,.設(shè),則有,,,可得,.,,;,;,,,.綜上可得,.故選:.【點(diǎn)睛】本題考查空間直線與平面所成的角的大小關(guān)系,考查三角函數(shù)的圖象和性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.10、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題11、A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因?yàn)楹瘮?shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點(diǎn)睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對(duì)實(shí)際問題:由實(shí)際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域?yàn)閍,b,則函數(shù)fgx12、C【解析】
先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【點(diǎn)睛】本題考查古典概型的概率的求法,涉及實(shí)際問題中組合數(shù)的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數(shù),恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù),由此能求出該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,該市的任意5位申請(qǐng)人中,基本事件總數(shù),該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù):,該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率是.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.14、1【解析】
寫出莖葉圖對(duì)應(yīng)的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個(gè)數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個(gè)數(shù),平均分為,故答案為1.【點(diǎn)睛】本題考查莖葉圖及平均數(shù)的計(jì)算,屬于基礎(chǔ)題.15、【解析】
先由題意得:,再利用向量數(shù)量積的幾何意義得,可得結(jié)果.【詳解】由知:,則在方向的投影為,由向量數(shù)量積的幾何意義得:,∴故答案為【點(diǎn)睛】本題考查了投影的應(yīng)用,考查了數(shù)量積的幾何意義及向量的模的運(yùn)算,屬于基礎(chǔ)題.16、2【解析】
聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點(diǎn)睛】此題考查了拋物線的性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并設(shè),則,,將不等式等價(jià)轉(zhuǎn)化為證明,構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,通過推導(dǎo)出來證得結(jié)論;(2)構(gòu)造函數(shù),對(duì)實(shí)數(shù)分、、,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最小值,再通過構(gòu)造新函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最大值,可得出的最大值.【詳解】(1),,所以,函數(shù)單調(diào)遞增,所以,當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞減;當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞增.要證,即證.不妨設(shè),則,,下證,即證,構(gòu)造函數(shù),,所以,函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,,且函數(shù)在區(qū)間上單調(diào)遞增,所以,即,故結(jié)論成立;(2)由恒成立,得恒成立,令,則.①當(dāng)時(shí),對(duì)任意的,,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),,不符合題意;②當(dāng)時(shí),;③當(dāng)時(shí),令,得,此時(shí),函數(shù)單調(diào)遞增;令,得,此時(shí),函數(shù)單調(diào)遞減...令,設(shè),則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以,函數(shù)在處取得最大值,即.因此,的最大值為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)證明不等式,同時(shí)也考查了利用導(dǎo)數(shù)求代數(shù)式的最值,構(gòu)造新函數(shù)是解答的關(guān)鍵,考查推理能力,屬于難題.18、(1)(2)證明見解析【解析】
(1)求出的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,,在上單調(diào)遞減,又,,,,,.即【點(diǎn)睛】本題考查利用函數(shù)的導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來解決不等式問題,屬于較難題.19、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】
(1)當(dāng)時(shí),求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個(gè)極值點(diǎn),求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當(dāng)時(shí),遞減,當(dāng)時(shí),遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時(shí),所以當(dāng)時(shí),有一個(gè)極值點(diǎn),當(dāng)時(shí),有兩個(gè)極值點(diǎn),當(dāng)時(shí),沒有極值點(diǎn),綜上因?yàn)槭堑膬蓚€(gè)極值點(diǎn),所以不妨設(shè),得,因?yàn)樵谶f減,且,所以又所以【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.20、(1)證明見詳解;(2)【解析】
(1)在折疊前的正方形ABCD中,作出對(duì)角線AC,BD,由正方形性質(zhì)知,又//,則于點(diǎn)H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結(jié)交于.因?yàn)?/,故可得,即又旋轉(zhuǎn)不改變上述垂直關(guān)系,且平面,面,又面,所以(2)因?yàn)闉橹倍娼?,故平面平?又其交線為,且平面,故可得底面,連結(jié),則即為與面所成角,連結(jié)交于,在中,,在中,.所以與面所成角的正弦值為.【點(diǎn)睛】本題考查了線面垂直的證明與性質(zhì),利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 車輛工程課程設(shè)計(jì)懸架
- 銑槽課程設(shè)計(jì)前言
- 鐵路物流課程設(shè)計(jì)
- 誤差課程設(shè)計(jì)
- 飲水機(jī)課程設(shè)計(jì)
- 運(yùn)動(dòng)區(qū)域探索課程設(shè)計(jì)
- 療愈師課課程設(shè)計(jì)
- 財(cái)務(wù)整合課程設(shè)計(jì)題
- 齒輪坯的課程設(shè)計(jì)
- 音樂思政課特色課程設(shè)計(jì)
- 蓋洛普Q12解讀和實(shí)施完整版
- 2023年Web前端技術(shù)試題
- GB/T 20840.8-2007互感器第8部分:電子式電流互感器
- GB/T 14864-2013實(shí)心聚乙烯絕緣柔軟射頻電纜
- 品牌策劃與推廣-項(xiàng)目5-品牌推廣課件
- 信息學(xué)奧賽-計(jì)算機(jī)基礎(chǔ)知識(shí)(完整版)資料
- 發(fā)煙硫酸(CAS:8014-95-7)理化性質(zhì)及危險(xiǎn)特性表
- 數(shù)字信號(hào)處理(課件)
- 公路自然災(zāi)害防治對(duì)策課件
- 耳鳴中醫(yī)臨床路徑
- 安徽身份證號(hào)碼前6位
評(píng)論
0/150
提交評(píng)論