2025屆安徽省安慶二中碧桂園分校高三最后一模數學試題含解析_第1頁
2025屆安徽省安慶二中碧桂園分校高三最后一模數學試題含解析_第2頁
2025屆安徽省安慶二中碧桂園分校高三最后一模數學試題含解析_第3頁
2025屆安徽省安慶二中碧桂園分校高三最后一模數學試題含解析_第4頁
2025屆安徽省安慶二中碧桂園分校高三最后一模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省安慶二中碧桂園分校高三最后一模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列的前項和為,且,則()A.45 B.42 C.25 D.362.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.23.若,,,點C在AB上,且,設,則的值為()A. B. C. D.4.中國古代數學著作《孫子算經》中有這樣一道算術題:“今有物不知其數,三三數之余二,五五數之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數除以正整數后的余數為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.5.點為的三條中線的交點,且,,則的值為()A. B. C. D.6.已知等差數列的公差不為零,且,,構成新的等差數列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.137.函數的對稱軸不可能為()A. B. C. D.8.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.9.設等差數列的前項和為,若,,則()A.21 B.22 C.11 D.1210.我國古代數學著作《九章算術》中有如下問題:“今有器中米,不知其數,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.10011.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數12.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.二、填空題:本題共4小題,每小題5分,共20分。13.設P為有公共焦點的橢圓與雙曲線的一個交點,且,橢圓的離心率為,雙曲線的離心率為,若,則______________.14.若奇函數滿足,為R上的單調函數,對任意實數都有,當時,,則________.15.在直角坐標系中,直線的參數方程為(為參數),曲線的參數方程為(為參數).(1)求直線和曲線的普通方程;(2)設為曲線上的動點,求點到直線距離的最小值及此時點的坐標.16.(5分)某膳食營養(yǎng)科研機構為研究牛蛙體內的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現(xiàn)從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.18.(12分)已知函數.(1)求不等式的解集;(2)若存在實數,使得不等式成立,求實數的取值范圍.19.(12分)已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)已知為橢圓的左、右焦點,離心率為,點在橢圓上.(1)求橢圓的方程;(2)過的直線分別交橢圓于和,且,問是否存在常數,使得成等差數列?若存在,求出的值;若不存在,請說明理由.21.(12分)已知函數,.(1)當時,求不等式的解集;(2)當時,不等式恒成立,求實數的取值范圍.22.(10分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標準方程;(2)經過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由等差數列的性質可知,進而代入等差數列的前項和的公式即可.【詳解】由題,.故選:D【點睛】本題考查等差數列的性質,考查等差數列的前項和.2、A【解析】

設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.3、B【解析】

利用向量的數量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.4、C【解析】從21開始,輸出的數是除以3余2,除以5余3,滿足條件的是23,故選C.5、B【解析】

可畫出圖形,根據條件可得,從而可解出,然后根據,進行數量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數乘的幾何意義,向量的數乘運算及向量的數量積的運算,考查運算求解能力,屬于中檔題.6、D【解析】

利用等差數列的通項公式可得,再利用等差數列的前項和公式即可求解.【詳解】由,,構成等差數列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數列的通項公式、等差數列的前項和公式,需熟記公式,屬于基礎題.7、D【解析】

由條件利用余弦函數的圖象的對稱性,得出結論.【詳解】對于函數,令,解得,當時,函數的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數的圖象的對稱性,屬于基礎題.8、A【解析】

由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.9、A【解析】

由題意知成等差數列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數列,可知也成等差數列,所以,即,解得.故選:A.【點睛】本題考查了等差數列的性質,考查了等差中項.對于等差數列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數列性質,可使得計算量大大減少.10、B【解析】

根據程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.11、D【解析】

當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.12、A【解析】

先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設根據橢圓的幾何性質可得,根據雙曲線的幾何性質可得,,即故答案為14、【解析】

根據可得,函數是以為周期的函數,令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數是以為周期的函數,,又函數為奇函數,所以.故答案為:【點睛】本題主要考查了換元法求函數解析式、函數的奇偶性、周期性的應用,屬于中檔題.15、(1),;(2),.【解析】

(1)利用代入消參的方法即可將兩個參數方程轉化為普通方程;(2)利用參數方程,結合點到直線的距離公式,將問題轉化為求解二次函數最值的問題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數方程中,,所以曲線的普通方程為.(2)設點.點到直線的距離.當時,,所以點到直線的距離的最小值為.此時點的坐標為.【點睛】本題考查將參數方程轉化為普通方程,以及利用參數方程求距離的最值問題,屬中檔題.16、【解析】

記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.【詳解】(1)證明:分別取,的中點,,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點為原點,以為軸,以為軸,以為軸,建立如圖所示空間直角坐標系由面,所以面的法向量可取,點,點,點,,,設面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學生的運算能力,在做此類題時,一定要準確寫出點的坐標.18、(1);(2).【解析】

(1)將函數的解析式表示為分段函數,然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數的最大值,由題意得出,解此不等式即可得出實數的取值范圍.【詳解】.(1)當時,由,解得,此時;當時,由,解得,此時;當時,由,解得,此時.綜上所述,不等式的解集;(2)當時,函數單調遞增,則;當時,函數單調遞減,則,即;當時,函數單調遞減,則.綜上所述,函數的最大值為,由題知,,解得.因此,實數的取值范圍是.【點睛】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數問題,考查分類討論思想的應用,考查運算求解能力,屬于中等題.19、(1)證明見解析;(2)【解析】

(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標系,分別表示出對應的點坐標,設平面的一個法向量為,結合直線對應的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標系,則,,,,,,.設平面的一個法向量為,由,取,得.設直線與平面所成角為,則.直線與平面所成角的正弦值為.【點睛】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記20、(1);(2)存在,.【解析】

(1)由條件建立關于的方程組,可求得,得出橢圓的方程;(2)①當直線的斜率不存在時,可求得,求得,②當直線的斜率存在且不為0時,設聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據等差中項可求得,得出結論.【詳解】(1)由條件得,所以橢圓的方程為:;(2),①當直線的斜率不存在時,,此時,②當直線的斜率存在且不為0時,設,聯(lián)立消元得,設,,直線的斜率為,同理可得,所以,綜合①②,存在常數,使得成等差數列.【點睛】本題考查利用橢圓的離心率求橢圓的標準方程,直線與橢圓的位置關系中的弦長公式的相關問題,當兩直線的斜率具有關系時,可能通過斜率的代換得出另一條線段的弦長,屬于中檔題.21、(1)(2)【解析】

(1)當時,,當或時,,所以可轉化為,解得,所以不等式的解集為.(2)因為,所以,所以,即,即.當時,因為,所以,不符合題意.當時,解可得,因為當時,不等式恒成立,所以,所以,解得,所以實數的取值范圍為.22、(1);(2)見解析【解析】

(1)根據已知可得,結合離心率和關系,即可求出橢圓的標準方程;(2)斜率不為零,設的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標關系,求出方程,令求出坐標,要證、、三點共線,只需證,將分子用縱坐標表示,即可證明結論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設的方程為,聯(lián)立方程,消

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論