版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省青島市黃島區(qū)致遠中學高考全國統(tǒng)考預測密卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是定義在上的偶函數,當時,,則,,的大小關系為()A. B. C. D.2.設正項等差數列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.363.設橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,直線BF交直線AC于M,且M為AC的中點,則橢圓E的離心率是()A. B. C. D.4.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20175.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則6.已知,若對任意,關于x的不等式(e為自然對數的底數)至少有2個正整數解,則實數a的取值范圍是()A. B. C. D.7.下列與函數定義域和單調性都相同的函數是()A. B. C. D.8.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.69.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.10.已知復數滿足,其中為虛數單位,則().A. B. C. D.11.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則12.復數(i為虛數單位)的共軛復數是A.1+i B.1?i C.?1+i D.?1?i二、填空題:本題共4小題,每小題5分,共20分。13.過圓的圓心且與直線垂直的直線方程為__________.14.已知向量=(1,2),=(-3,1),則=______.15.在的二項展開式中,所有項的二項式系數之和為256,則_______,項的系數等于________.16.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.18.(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現從中隨機抽取40人進行選科情況調查,用數字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數為奇數時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數是否需要調整?如果需要調整,各需增加或減少多少人?(2)請創(chuàng)建列聯表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數為,用樣本的頻率估計概率,求的分布列與期望.19.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當平面,求的值;(2)當是中點時,求四面體的體積.20.(12分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.21.(12分)設橢圓,直線經過點,直線經過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.22.(10分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數216362574以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據函數的奇偶性得,再比較的大小,根據函數的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.【點睛】本題考查函數的奇偶性的應用、冪、指、對的大小比較,以及根據函數的單調性比較大小,屬于中檔題.2、B【解析】
方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.3、C【解析】
連接,為的中位線,從而,且,進而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點為A,右焦點為F,B、C為橢圓上關于原點對稱的兩點,不妨設B在第二象限,直線BF交直線AC于M,且M為AC的中點為的中位線,,且,,解得橢圓的離心率.故選:C【點睛】本題考查了橢圓的幾何性質,考查了運算求解能力,屬于基礎題.4、D【解析】
依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.5、D【解析】
根據線面平行和面面平行的性質,可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據線面平行和面面平行的性質,有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.6、B【解析】
構造函數(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數解,構造函數,,通過導數研究單調性,由可知,要使得至少有2個正整數解,只需即可,代入可求得結果.【詳解】構造函數(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數在判斷函數單調性中的應用,考查不等式成立問題中求解參數問題,考查學生分析問題的能力和邏輯推理能力,難度較難.7、C【解析】
分析函數的定義域和單調性,然后對選項逐一分析函數的定義域、單調性,由此確定正確選項.【詳解】函數的定義域為,在上為減函數.A選項,的定義域為,在上為增函數,不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數,符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數的定義域和單調性,屬于基礎題.8、B【解析】
根據正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.9、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養(yǎng)10、A【解析】
先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復數的基本運算,注意計算的準確度,屬于簡單題目.11、B【解析】
根據空間中線線、線面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于??碱}型.12、B【解析】分析:化簡已知復數z,由共軛復數的定義可得.詳解:化簡可得z=∴z的共軛復數為1﹣i.故選B.點睛:本題考查復數的代數形式的運算,涉及共軛復數,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據與已知直線垂直關系,設出所求直線方程,將已知圓圓心坐標代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題考查圓的方程、直線方程求法,注意直線垂直關系的靈活應用,屬于基礎題.14、-6【解析】
由可求,然后根據向量數量積的坐標表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點睛】本題主要考查了向量數量積的坐標表示,屬于基礎試題.15、81【解析】
根據二項式系數和的性質可得n,再利用展開式的通項公式求含項的系數即可.【詳解】由于所有項的二項式系數之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數的性質,二項式展開式的通項公式,屬于中檔題.16、【解析】
設,設出直線AB的參數方程,利用參數的幾何意義可得,由題意得到,據此求得離心率的取值范圍.【詳解】設,直線AB的參數方程為,(為參數)代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【點睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數方程的運用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標原點,以,,的方向為,,軸的正方向,建立空間直角坐標系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設平面的法向量,由,得,令,得,所以平面的法向量,同理,設平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學生的運算求解能力,是一道中檔題.18、(1)不需調整(2)列聯表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析【解析】
(1)可估計高一年級選修相應科目的人數分別為120,2,推理得對應開設選修班的數目分別為15,1.推理知生物科目需要減少4名教師,化學科目不需要調整.(2)根據列聯表計算觀測值,根據臨界值表可得結論.(3)經統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,根據二項分布概率公式可得分布列和數學期望.【詳解】(1)經統(tǒng)計可知,樣本40人中,選修化學、生物的人數分別為24,11,則可估計高一年級選修相應科目的人數分別為120,2.根據每個選修班最多編排50人,且盡量滿額編班,得對應開設選修班的數目分別為15,1.現有化學、生物科目教師每科各8人,根據每位教師執(zhí)教2個選修班,當且僅當一門科目的選課班級總數為奇數時,允許這門科目的一位教師執(zhí)教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調整.(2)根據表格中的數據進行統(tǒng)計后,制作列聯表如下:選物理不選物理合計選化學19524不選化學61016合計251540則,有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關.(3)經統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,分布列如下:01230.3430.4410.1890.021數學期望為.【點睛】本題主要考查了離散型隨機變量的期望與方差,考查獨立性檢驗,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1).(2)【解析】
(1)利用線面垂直的性質得出,進而得出,利用相似三角形的性質,得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進而得出四面體的體積,計算出,,即可得出四面體的體積.【詳解】(1)因為平面,平面,所以又因為,都垂直于平面,所以又,分別是正方形邊,的中點,且,所以.(2)因為,分別是正方形邊,的中點,所以又因為,都垂直于平面,平面,所以因為平面,所以平面所以,四面體的體積,所以.【點睛】本題主要考查了線面垂直的性質定理的應用,以及求棱錐的體積,屬于中檔題.20、(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解析】
(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數使得以線段為直徑的圓恰好經過坐標原點.設點,,,,將直線的方程代入,化簡,利用韋達定理,結合向量的數量積為0,轉化為:.求解即可.【詳解】解:(1)設橢圓的焦半距為c,則由題設,得,解得,所以,故所求橢圓C的方程為(2)存在實數k使得以線段為直徑的圓恰好經過坐標原點O.理由如下:設點,,將直線的方程代入,并整理,得.(*)則,因為以線段為直徑的圓恰好經過坐標原點O,所以,即.又,于是,解得,經檢驗知:此時(*)式的,符合題意.所以當時,以線段為直徑的圓恰好經過坐標原點O【點睛】本題考查橢圓方程的求法,橢圓的簡單性質,直線與橢圓位置關系的綜合應用,考查計算能力以及轉化思想的應用,屬于中檔題.21、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】
(Ⅰ)計算得到故,,,,計算得到面積.(Ⅱ)設為,聯立方程得到,計算,同理,根據得到,得到證明.(Ⅲ)設中點為,根據點差法得到,同理,故,得到結論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設為,則,故,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度打井安全應急演練協議書編制指南4篇
- 2025年度純凈水電商平臺用戶服務協議4篇
- 二零二五年度寵物送養(yǎng)與領養(yǎng)社區(qū)共建協議3篇
- 2025企業(yè)技術人員勞動合同
- 2025版?zhèn)€人租賃車位合同范本2篇
- 二零二五年度商業(yè)車庫租賃與廣告投放合同4篇
- 2025年度企業(yè)代持股協議范本:上市公司股權代持操作細則4篇
- 二零二五年度阿里巴巴物聯網平臺建設與運營協議3篇
- 二零二五年度二零二五年度服裝行業(yè)大數據分析采購合同
- 二零二五年廠房產權互換合同模板4篇
- 垃圾處理廠工程施工組織設計
- 天皰瘡患者護理
- 機電一體化系統(tǒng)設計-第5章-特性分析
- 2025年高考物理復習壓軸題:電磁感應綜合問題(原卷版)
- 雨棚鋼結構施工組織設計正式版
- 2025年蛇年新年金蛇賀歲金蛇狂舞春添彩玉樹臨風福滿門模板
- 《建筑制圖及陰影透視(第2版)》課件 4-直線的投影
- 2024-2030年中國IVD(體外診斷)測試行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 碎紙機設計說明書
- 湖南省長沙市青竹湖湘一外國語學校2021-2022學年八年級下學期期中語文試題
- 2024年股權代持協議經典版(3篇)
評論
0/150
提交評論