江南大學(xué)《人工智能導(dǎo)論》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
江南大學(xué)《人工智能導(dǎo)論》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
江南大學(xué)《人工智能導(dǎo)論》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
江南大學(xué)《人工智能導(dǎo)論》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
江南大學(xué)《人工智能導(dǎo)論》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁江南大學(xué)

《人工智能導(dǎo)論》2022-2023學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能中的專家系統(tǒng)是一種基于知識的系統(tǒng)。假設(shè)有一個用于故障診斷的專家系統(tǒng),需要將專家的知識和經(jīng)驗轉(zhuǎn)化為系統(tǒng)的規(guī)則和推理機制。以下關(guān)于專家系統(tǒng)的描述,哪一項是不準(zhǔn)確的?()A.專家系統(tǒng)的性能取決于知識的準(zhǔn)確性和完整性B.專家系統(tǒng)能夠處理不確定性和模糊性的知識C.專家系統(tǒng)的開發(fā)需要大量的時間和專業(yè)知識D.專家系統(tǒng)一旦開發(fā)完成,就不需要進(jìn)行更新和維護(hù)2、人工智能中的語音合成技術(shù)旨在將文本轉(zhuǎn)換為自然流暢的語音。假設(shè)我們要為一款智能語音助手開發(fā)語音合成功能,以下關(guān)于語音合成的描述,哪一項是錯誤的?()A.可以通過拼接預(yù)先錄制的語音片段來實現(xiàn)B.基于深度學(xué)習(xí)的方法能夠生成更自然的語音語調(diào)C.語音合成的質(zhì)量只取決于聲學(xué)模型D.韻律和情感的表達(dá)是語音合成中的重要挑戰(zhàn)3、可解釋性是人工智能模型面臨的一個重要問題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過程和結(jié)果,增強信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級的差異4、人工智能在金融風(fēng)險預(yù)測中具有應(yīng)用潛力。假設(shè)要預(yù)測股票市場的波動,以下哪種數(shù)據(jù)來源可能對預(yù)測結(jié)果的準(zhǔn)確性提升幫助最?。浚ǎ〢.公司的財務(wù)報表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀經(jīng)濟(jì)指標(biāo)5、在人工智能的研究中,可解釋性是一個重要的問題。假設(shè)我們訓(xùn)練了一個復(fù)雜的深度學(xué)習(xí)模型用于醫(yī)療診斷,但是其決策過程難以理解。那么,以下關(guān)于模型可解釋性的說法,哪一項是不正確的?()A.可解釋性對于建立用戶信任至關(guān)重要B.一些可視化技術(shù)可以幫助理解模型的內(nèi)部工作機制C.為了追求高精度,模型的可解釋性可以被犧牲D.可解釋性有助于發(fā)現(xiàn)模型可能存在的偏差和錯誤6、在強化學(xué)習(xí)中,智能體通過與環(huán)境進(jìn)行交互并根據(jù)獎勵來學(xué)習(xí)最優(yōu)策略。假設(shè)一個機器人要在一個復(fù)雜的迷宮環(huán)境中找到出口,每次到達(dá)出口會獲得高獎勵,碰到墻壁會獲得低獎勵。在這種情況下,以下哪種強化學(xué)習(xí)算法可能更適合訓(xùn)練機器人找到最優(yōu)路徑?()A.Q-learning算法,通過估計狀態(tài)動作值來選擇動作B.SARSA算法,基于當(dāng)前策略進(jìn)行學(xué)習(xí)C.策略梯度算法,直接優(yōu)化策略D.蒙特卡羅方法,通過多次試驗估計價值7、在人工智能的倫理和社會影響方面,存在許多需要思考的問題。假設(shè)一個基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡歷和面試表現(xiàn)進(jìn)行篩選。以下關(guān)于這種系統(tǒng)可能帶來的潛在問題,哪一項是最值得關(guān)注的?()A.系統(tǒng)可能會因為數(shù)據(jù)偏差而對某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過程過于透明,導(dǎo)致企業(yè)招聘策略被競爭對手輕易了解C.系統(tǒng)可能會過于依賴簡歷信息,而忽略了候選人的實際能力和潛力D.系統(tǒng)的運行成本過高,對企業(yè)造成經(jīng)濟(jì)負(fù)擔(dān)8、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機制C.對抗生成網(wǎng)絡(luò)D.以上都是9、在人工智能的發(fā)展中,模型壓縮和優(yōu)化技術(shù)有助于在資源受限的設(shè)備上部署模型。假設(shè)要將一個大型的人工智能模型部署到移動設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的描述,哪一項是不正確的?()A.可以采用剪枝、量化等方法減少模型的參數(shù)數(shù)量和計算量B.模型壓縮可能會導(dǎo)致一定程度的性能損失,但可以通過優(yōu)化算法來彌補C.模型壓縮和優(yōu)化只適用于深度學(xué)習(xí)模型,對傳統(tǒng)機器學(xué)習(xí)模型無效D.需要在模型性能和資源消耗之間進(jìn)行平衡,找到最優(yōu)的解決方案10、人工智能在金融領(lǐng)域的應(yīng)用越來越廣泛,如風(fēng)險評估、投資決策和欺詐檢測等。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,不準(zhǔn)確的是()A.可以通過分析大量的金融數(shù)據(jù),更準(zhǔn)確地評估風(fēng)險和預(yù)測市場趨勢B.能夠為投資者提供個性化的投資建議,優(yōu)化投資組合C.人工智能在金融領(lǐng)域的應(yīng)用完全消除了風(fēng)險和錯誤,保障了金融交易的絕對安全D.金融機構(gòu)在采用人工智能技術(shù)時,需要考慮合規(guī)性和監(jiān)管要求11、在人工智能的圖像生成領(lǐng)域,生成對抗網(wǎng)絡(luò)(GAN)取得了令人矚目的成果。假設(shè)要生成逼真的藝術(shù)畫作,同時具有獨特的風(fēng)格和創(chuàng)造力。以下哪種改進(jìn)的GAN架構(gòu)或訓(xùn)練方法能夠更好地實現(xiàn)這一目標(biāo)?()A.條件GANB.循環(huán)GANC.自監(jiān)督GAND.以上方法結(jié)合使用12、人工智能在智能推薦系統(tǒng)中的應(yīng)用越來越普遍。假設(shè)要為一個電商平臺開發(fā)推薦系統(tǒng),以下關(guān)于考慮用戶興趣動態(tài)變化的方法,哪一項是最重要的?()A.定期重新訓(xùn)練模型,以反映用戶興趣的最新變化B.只根據(jù)用戶的歷史購買記錄進(jìn)行推薦,不考慮近期行為C.為用戶推薦始終不變的熱門商品,不考慮其個人興趣D.隨機推薦商品,期望能夠滿足用戶的動態(tài)興趣13、在人工智能的研究中,可解釋性是一個重要的問題。假設(shè)開發(fā)了一個用于醫(yī)療診斷的人工智能模型,以下關(guān)于模型可解釋性的描述,哪一項是不正確的?()A.解釋模型的決策過程和依據(jù),有助于提高醫(yī)生對診斷結(jié)果的信任度B.特征重要性分析可以幫助理解哪些輸入特征對診斷結(jié)果影響較大C.深度學(xué)習(xí)模型由于其復(fù)雜性,無法進(jìn)行任何形式的解釋D.開發(fā)具有可解釋性的人工智能模型對于醫(yī)療等關(guān)鍵領(lǐng)域至關(guān)重要14、在強化學(xué)習(xí)中,“Q-learning”算法通過估計什么來進(jìn)行決策?()A.狀態(tài)價值B.動作價值C.策略D.獎勵15、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項是不太可取的?()A.基于經(jīng)驗和直覺,隨機選擇一組超參數(shù)進(jìn)行試驗B.使用網(wǎng)格搜索或隨機搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實踐中常用的超參數(shù)設(shè)置D.利用自動超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗證集的性能自動尋找最優(yōu)超參數(shù)16、在人工智能的研究中,強化學(xué)習(xí)被廣泛應(yīng)用于智能體的決策和優(yōu)化問題。假設(shè)一個智能機器人需要在復(fù)雜的環(huán)境中學(xué)習(xí)如何行走并避開障礙物,以最快的速度到達(dá)目標(biāo)位置。在這種情況下,以下哪種強化學(xué)習(xí)算法能夠使機器人更快地學(xué)習(xí)到有效的策略,同時具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法17、人工智能中的遷移學(xué)習(xí)技術(shù)可以利用已有的知識和模型來解決新的問題。假設(shè)已經(jīng)有一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個新的、但相關(guān)的圖像分類任務(wù)。以下哪種遷移學(xué)習(xí)策略最有可能取得較好的效果?()A.直接使用原模型進(jìn)行預(yù)測B.微調(diào)原模型的部分層C.重新訓(xùn)練一個新的模型D.對原模型進(jìn)行壓縮18、人工智能中的強化學(xué)習(xí)算法可以用于訓(xùn)練機器人完成復(fù)雜的任務(wù)。假設(shè)一個機器人需要通過強化學(xué)習(xí)學(xué)會在不同地形上行走。以下關(guān)于強化學(xué)習(xí)訓(xùn)練機器人的描述,哪一項是不正確的?()A.機器人通過與環(huán)境的交互獲得獎勵或懲罰,從而調(diào)整自己的動作策略B.可以使用模擬環(huán)境進(jìn)行大量的訓(xùn)練,以減少在真實環(huán)境中的試驗成本和風(fēng)險C.強化學(xué)習(xí)訓(xùn)練出的機器人策略在不同的環(huán)境條件下都能保持最優(yōu)性能,無需進(jìn)一步調(diào)整D.合理設(shè)計獎勵函數(shù)對于引導(dǎo)機器人學(xué)習(xí)到期望的行為至關(guān)重要19、在人工智能的情感分析任務(wù)中,需要判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下關(guān)于情感分析的描述,正確的是:()A.僅僅依靠關(guān)鍵詞匹配就能夠準(zhǔn)確判斷文本的情感傾向B.深度學(xué)習(xí)模型在情感分析中總是比傳統(tǒng)的機器學(xué)習(xí)方法更準(zhǔn)確C.考慮文本的上下文、語義和語法結(jié)構(gòu)等多方面信息,能夠提高情感分析的準(zhǔn)確性D.情感分析的結(jié)果不受文本的語言風(fēng)格和表達(dá)方式的影響20、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護(hù)數(shù)據(jù)隱私的同時實現(xiàn)模型訓(xùn)練。假設(shè)多個機構(gòu)想要聯(lián)合訓(xùn)練一個人工智能模型,同時保護(hù)各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)可以在不共享原始數(shù)據(jù)的情況下,直接合并各機構(gòu)的模型參數(shù)進(jìn)行訓(xùn)練B.聯(lián)邦學(xué)習(xí)過程中不存在通信開銷和安全風(fēng)險C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學(xué)習(xí)能夠在保護(hù)數(shù)據(jù)隱私的前提下協(xié)同訓(xùn)練模型D.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復(fù)雜的任務(wù)不適用21、在人工智能的發(fā)展中,算力的需求不斷增長。假設(shè)要訓(xùn)練一個大型的人工智能模型,以下關(guān)于算力的描述,正確的是:()A.普通的個人電腦就能夠滿足訓(xùn)練大型人工智能模型的算力需求B.算力的提升主要依賴硬件的改進(jìn),軟件優(yōu)化的作用不大C.云計算平臺可以提供強大的算力支持,幫助研究人員和企業(yè)訓(xùn)練復(fù)雜的人工智能模型D.算力的增長對人工智能模型的性能提升沒有實質(zhì)性的幫助22、假設(shè)要開發(fā)一個能夠輔助醫(yī)生進(jìn)行疾病診斷的人工智能系統(tǒng),需要整合多種醫(yī)療數(shù)據(jù),如病歷、影像、檢驗報告等。在這個過程中,以下哪個環(huán)節(jié)可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)的清洗和預(yù)處理B.多模態(tài)數(shù)據(jù)的融合C.模型的訓(xùn)練和優(yōu)化D.模型的解釋和可信賴性23、人工智能在智能推薦系統(tǒng)中發(fā)揮著重要作用。例如,電商平臺通過分析用戶的購買歷史和瀏覽行為為用戶推薦商品。以下關(guān)于智能推薦系統(tǒng)的描述,哪一項是不正確的?()A.推薦系統(tǒng)可以基于用戶的協(xié)同過濾進(jìn)行推薦B.推薦系統(tǒng)只考慮用戶的近期行為,忽略歷史行為C.推薦系統(tǒng)可以結(jié)合內(nèi)容過濾和協(xié)同過濾提高推薦效果D.推薦系統(tǒng)需要不斷更新和優(yōu)化以適應(yīng)用戶興趣的變化24、當(dāng)利用人工智能進(jìn)行藥物研發(fā),例如預(yù)測藥物分子的活性和副作用,以下哪種技術(shù)和數(shù)據(jù)可能是重要的支撐?()A.化學(xué)信息學(xué)和分子模擬B.生物醫(yī)學(xué)數(shù)據(jù)和機器學(xué)習(xí)C.藥物臨床試驗數(shù)據(jù)和統(tǒng)計分析D.以上都是25、人工智能中的情感識別不僅可以應(yīng)用于人類的情感分析,還可以用于動物的行為研究。假設(shè)我們要通過動物的行為來判斷其情感狀態(tài),以下關(guān)于動物情感識別的說法,哪一項是正確的?()A.動物的情感表達(dá)和人類完全相同B.可以直接使用人類情感識別的模型和方法C.需要結(jié)合動物的生理特征和行為模式進(jìn)行分析D.動物的情感識別沒有實際應(yīng)用價值26、深度學(xué)習(xí)在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)我們正在訓(xùn)練一個深度神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物。如果訓(xùn)練數(shù)據(jù)中某些動物類別的樣本數(shù)量過少,可能會導(dǎo)致什么問題?()A.模型過擬合B.模型欠擬合C.訓(xùn)練速度加快D.模型的準(zhǔn)確率提高27、在人工智能的發(fā)展過程中,倫理和社會問題日益受到關(guān)注。以下關(guān)于人工智能倫理問題的描述,不正確的是()A.人工智能可能導(dǎo)致就業(yè)結(jié)構(gòu)的變化,一些工作可能被自動化取代,從而引發(fā)社會就業(yè)問題B.人工智能在決策過程中可能存在偏見和不公平,例如在信用評估、招聘等領(lǐng)域C.隨著人工智能技術(shù)的發(fā)展,個人隱私保護(hù)面臨更大的挑戰(zhàn),因為大量的數(shù)據(jù)被收集和分析D.人工智能倫理問題不重要,技術(shù)的發(fā)展應(yīng)該優(yōu)先于倫理和社會問題的考慮28、在人工智能的發(fā)展中,倫理和社會問題日益受到關(guān)注。假設(shè)一個城市計劃廣泛部署具有人臉識別功能的監(jiān)控系統(tǒng),以下關(guān)于人工智能倫理的描述,哪一項是不正確的?()A.需要考慮個人隱私保護(hù),確保人臉識別數(shù)據(jù)的安全存儲和使用B.應(yīng)該評估該系統(tǒng)可能帶來的歧視和不公平待遇等潛在風(fēng)險C.只要該系統(tǒng)能夠提高城市的安全性,就無需考慮倫理和社會影響D.公眾應(yīng)該參與到關(guān)于人工智能應(yīng)用的決策過程中,表達(dá)自己的意見和關(guān)切29、在人工智能的自然語言生成任務(wù)中,如何生成連貫、有邏輯的文本是一個挑戰(zhàn)。假設(shè)要開發(fā)一個能夠自動撰寫新聞報道的系統(tǒng),需要考慮文章的結(jié)構(gòu)、語法和語義的一致性。以下哪種方法或技術(shù)在提高文本生成質(zhì)量方面最為關(guān)鍵?()A.預(yù)訓(xùn)練語言模型B.強化學(xué)習(xí)中的獎勵機制C.語法規(guī)則約束D.以上方法結(jié)合使用30、人工智能在氣象預(yù)測中的應(yīng)用可以提高預(yù)測的準(zhǔn)確性和精細(xì)化程度。假設(shè)要開發(fā)一個能夠預(yù)測局部地區(qū)短期天氣變化的人工智能模型,需要考慮多種氣象因素的相互作用。以下哪種模型架構(gòu)和訓(xùn)練方法在處理這種復(fù)雜的時空數(shù)據(jù)方面表現(xiàn)更為出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長短期記憶網(wǎng)絡(luò)(LSTM)C.門控循環(huán)單元(GRU)D.以上模型結(jié)合使用二、操作題(本大題共5個小題,共25分)1、(本題5分)利用Scikit-learn中的樸素貝葉斯算法,對垃圾郵件進(jìn)行分類。提取郵件中的文本特征,計算分類的準(zhǔn)確率和誤判率。2、(本題5分)利用Python中的PyTorch框架,構(gòu)建一個長短時記憶網(wǎng)絡(luò)(LSTM)模型,對文本情感進(jìn)行分類。使用預(yù)訓(xùn)練的詞向量模型,對文本數(shù)據(jù)進(jìn)行處理,并在測試集上評估模型的性能。3、(本題5分)借助TensorFlow構(gòu)建一個推薦系統(tǒng)模型,根據(jù)用戶的音樂喜好為其推薦相關(guān)的歌曲。研究用戶興趣的動態(tài)變化對推薦效果的影響。4、(本題5分)使用Python的Scikit-learn庫,實現(xiàn)隨機森林算法對糖尿病數(shù)據(jù)集進(jìn)行分類,通過特征重要性分析選擇關(guān)鍵特征,提高模型性能。5、(本題5分)運用PyTorch構(gòu)建一個基于注意力機制的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論