云南省硯山縣第二中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第1頁
云南省硯山縣第二中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第2頁
云南省硯山縣第二中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第3頁
云南省硯山縣第二中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第4頁
云南省硯山縣第二中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省硯山縣第二中學(xué)2025屆高考數(shù)學(xué)必刷試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.2.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅督造的一種標(biāo)準(zhǔn)量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當(dāng)該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.43.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個4.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.55.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.6.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.7.設(shè)集合(為實數(shù)集),,,則()A. B. C. D.8.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形9.將函數(shù)圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.10.已知函數(shù),則不等式的解集為()A. B. C. D.11.已知隨機變量的分布列是則()A. B. C. D.12.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點處的切線方程是_______.14.由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經(jīng)濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失統(tǒng)計如圖所示,估算月經(jīng)濟損失的平均數(shù)為,中位數(shù)為n,則_________.15.若函數(shù)的圖像與直線的三個相鄰交點的橫坐標(biāo)分別是,,,則實數(shù)的值為________.16.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(Ⅰ)判斷函數(shù)在區(qū)間上零點的個數(shù),并證明;(Ⅱ)函數(shù)在區(qū)間上的極值點從小到大分別為,,證明:18.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內(nèi)有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.19.(12分)已知集合,.(1)若,則;(2)若,求實數(shù)的取值范圍.20.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.21.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點.(1)求證:;(2)求二面角的大?。?2.(10分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大??;(2)在棱上確定一點,使二面角的平面角的余弦值為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學(xué)生的運算能力,屬于中檔題.2、D【解析】

根據(jù)三視圖即可求得幾何體表面積,即可解得未知數(shù).【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎(chǔ)題.3、C【解析】

求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認識,本題中集合都是曲線上的點集.4、D【解析】

利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.5、D【解析】

通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.6、A【解析】

設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導(dǎo)數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.7、A【解析】

根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎(chǔ)題.8、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.9、D【解析】

根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.10、D【解析】

先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.11、C【解析】

利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.12、B【解析】

采用排除法:通過判斷函數(shù)的奇偶性排除選項A;通過判斷特殊點的函數(shù)值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數(shù)的定義域為,其關(guān)于原點對稱,因為,所以函數(shù)為奇函數(shù),其圖象關(guān)于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數(shù)的奇偶性和特殊點函數(shù)值符號判斷函數(shù)圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求導(dǎo),x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1【點睛】本題考查切線方程,求導(dǎo)法則及運算,考查直線方程,考查計算能力,是基礎(chǔ)題14、360【解析】

先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.【點睛】本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15、4【解析】

由題可分析函數(shù)與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的16、【解析】

由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關(guān)鍵是由三視圖還原原幾何體,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)函數(shù)在區(qū)間上有兩個零點.見解析(Ⅱ)見解析【解析】

(Ⅰ)根據(jù)題意,,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,分類討論在區(qū)間的單調(diào)區(qū)間和極值,進而研究零點個數(shù)問題;(Ⅱ)求導(dǎo),,由于在區(qū)間上的極值點從小到大分別為,,求出,利用導(dǎo)數(shù)結(jié)合單調(diào)性和極值點,即可證明出.【詳解】解:(Ⅰ),,當(dāng)時,,,在區(qū)間上單調(diào)遞減,,在區(qū)間上無零點;當(dāng)時,,在區(qū)間上單調(diào)遞增,,在區(qū)間上唯一零點;當(dāng)時,,,在區(qū)間上單調(diào)遞減,,;在區(qū)間上唯一零點;綜上可知,函數(shù)在區(qū)間上有兩個零點.(Ⅱ),,由(Ⅰ)知在無極值點;在有極小值點,即為;在有極大值點,即為,由,即,,2…,,,,,,以及的單調(diào)性,,,,,由函數(shù)在單調(diào)遞增,得,,由在單調(diào)遞減,得,即,故.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,通過導(dǎo)數(shù)解決函數(shù)零點個數(shù)問題和證明不等式,考查轉(zhuǎn)化思想和計算能力.18、(1)見解析(2)(3)【解析】

(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(2)解:由題,因為函數(shù)在定義域內(nèi)有局部對稱點所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點睛】本題考查函數(shù)的局部對稱點的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運算能力.19、(1);(2)【解析】

(1)將代入可得集合B,解對數(shù)不等式可得集合A,由并集運算即可得解.(2)由可知B為A的子集,即;當(dāng)符合題意,當(dāng)B不為空集時,由不等式關(guān)系即可求得的取值范圍.【詳解】(1)若,則,依題意,故;(2)因為,故;若,即時,,符合題意;若,即時,,解得;綜上所述,實數(shù)的取值范圍為.【點睛】本題考查了集合的并集運算,由集合的包含關(guān)系求參數(shù)的取值范圍,注意討論集合是否為空集的情況,屬于基礎(chǔ)題.20、(1)增區(qū)間為,減區(qū)間為;(2).【解析】

(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導(dǎo)數(shù),分類討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實數(shù)的取值范圍.【詳解】(1)當(dāng)時,,則,當(dāng)時,,則,此時,函數(shù)為減函數(shù);當(dāng)時,,則,此時,函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當(dāng)時,即當(dāng)時,,由,得,此時,函數(shù)為增函數(shù);由,得,此時,函數(shù)為減函數(shù).則,不合乎題意;②當(dāng)時,即時,.不妨設(shè),其中,令,則或.(i)當(dāng)時,,當(dāng)時,,此時,函數(shù)為增函數(shù);當(dāng)時,,此時,函數(shù)為減函數(shù);當(dāng)時,,此時,函數(shù)為增函數(shù).此時,而,構(gòu)造函數(shù),,則,所以,函數(shù)在區(qū)間上單調(diào)遞增,則,即當(dāng)時,,所以,.,符合題意;②當(dāng)時,,函數(shù)在上為增函數(shù),,符合題意;③當(dāng)時,同理可得函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,此時,則,解得.綜上所述,實數(shù)的取值范圍是.【點睛】本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查恒成立問題,正確求導(dǎo)和分類討論是關(guān)鍵,屬于難題.21、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計算可得其正切值為,故二面角的大小為;法二:以D為原點建立空間直角坐標(biāo)系,計算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點建立空間直角坐標(biāo)系,B(1,0,0),P(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論