下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)浙江師范大學(xué)《機(jī)器學(xué)習(xí)》
2021-2022學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像??紤]到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過(guò)對(duì)抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問(wèn)題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過(guò)逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計(jì)算成本較高2、考慮一個(gè)圖像分類(lèi)任務(wù),使用深度學(xué)習(xí)模型進(jìn)行訓(xùn)練。在訓(xùn)練過(guò)程中,如果發(fā)現(xiàn)模型在訓(xùn)練集上的準(zhǔn)確率很高,但在驗(yàn)證集上的準(zhǔn)確率較低,可能存在以下哪種問(wèn)題?()A.模型欠擬合,需要增加模型的復(fù)雜度B.數(shù)據(jù)預(yù)處理不當(dāng),需要重新處理數(shù)據(jù)C.模型過(guò)擬合,需要采取正則化措施D.訓(xùn)練數(shù)據(jù)量不足,需要增加更多的數(shù)據(jù)3、在一個(gè)醫(yī)療診斷項(xiàng)目中,我們希望利用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)患者是否患有某種疾病。收集到的數(shù)據(jù)集包含患者的各種生理指標(biāo)、病史等信息。在選擇合適的機(jī)器學(xué)習(xí)算法時(shí),需要考慮多個(gè)因素,如數(shù)據(jù)的規(guī)模、特征的數(shù)量、數(shù)據(jù)的平衡性等。如果數(shù)據(jù)量較大,特征維度較高,且存在一定的噪聲,以下哪種算法可能是最優(yōu)選擇?()A.邏輯回歸算法,簡(jiǎn)單且易于解釋B.決策樹(shù)算法,能夠處理非線性關(guān)系C.支持向量機(jī)算法,在小樣本數(shù)據(jù)上表現(xiàn)出色D.隨機(jī)森林算法,對(duì)噪聲和異常值具有較好的容忍性4、假設(shè)要為一個(gè)智能推薦系統(tǒng)選擇算法,根據(jù)用戶(hù)的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過(guò)濾的推薦算法,利用用戶(hù)之間的相似性或物品之間的相關(guān)性進(jìn)行推薦,但存在冷啟動(dòng)和數(shù)據(jù)稀疏問(wèn)題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶(hù)的偏好匹配推薦,但對(duì)新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過(guò)濾和內(nèi)容推薦的優(yōu)點(diǎn),并通過(guò)特征工程和模型融合提高推薦效果,但實(shí)現(xiàn)復(fù)雜D.基于強(qiáng)化學(xué)習(xí)的推薦算法,通過(guò)與用戶(hù)的交互不斷優(yōu)化推薦策略,但訓(xùn)練難度大且收斂慢5、在處理不平衡數(shù)據(jù)集時(shí),以下關(guān)于解決數(shù)據(jù)不平衡問(wèn)題的方法,哪一項(xiàng)是不正確的?()A.過(guò)采樣方法通過(guò)增加少數(shù)類(lèi)樣本的數(shù)量來(lái)平衡數(shù)據(jù)集B.欠采樣方法通過(guò)減少多數(shù)類(lèi)樣本的數(shù)量來(lái)平衡數(shù)據(jù)集C.合成少數(shù)類(lèi)過(guò)采樣技術(shù)(SMOTE)通過(guò)合成新的少數(shù)類(lèi)樣本來(lái)平衡數(shù)據(jù)集D.數(shù)據(jù)不平衡對(duì)模型性能沒(méi)有影響,不需要采取任何措施來(lái)處理6、假設(shè)我們要使用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)股票價(jià)格的走勢(shì)。以下哪種數(shù)據(jù)特征可能對(duì)預(yù)測(cè)結(jié)果幫助較?。ǎ〢.公司的財(cái)務(wù)報(bào)表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟(jì)指標(biāo)7、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測(cè)問(wèn)題,數(shù)據(jù)具有季節(jié)性和趨勢(shì)性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以8、在一個(gè)圖像生成任務(wù)中,例如生成逼真的人臉圖像,生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的方法。GAN由生成器和判別器組成,它們?cè)谟?xùn)練過(guò)程中相互對(duì)抗。以下關(guān)于GAN訓(xùn)練過(guò)程的描述,哪一項(xiàng)是不正確的?()A.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器B.判別器的目標(biāo)是準(zhǔn)確區(qū)分真實(shí)圖像和生成器生成的圖像C.訓(xùn)練初期,生成器和判別器的性能都比較差,生成的圖像質(zhì)量較低D.隨著訓(xùn)練的進(jìn)行,判別器的性能逐漸下降,而生成器的性能不斷提升9、某研究需要對(duì)大量的文本數(shù)據(jù)進(jìn)行情感分析,判斷文本的情感傾向是積極、消極還是中性。以下哪種機(jī)器學(xué)習(xí)方法在處理此類(lèi)自然語(yǔ)言處理任務(wù)時(shí)經(jīng)常被采用?()A.基于規(guī)則的方法B.機(jī)器學(xué)習(xí)分類(lèi)算法C.深度學(xué)習(xí)情感分析模型D.以上方法都可能有效,取決于數(shù)據(jù)和任務(wù)特點(diǎn)10、某研究需要對(duì)生物信息數(shù)據(jù)進(jìn)行分析,例如基因序列數(shù)據(jù)。以下哪種機(jī)器學(xué)習(xí)方法在處理生物信息學(xué)問(wèn)題中經(jīng)常被應(yīng)用?()A.隱馬爾可夫模型B.條件隨機(jī)場(chǎng)C.深度學(xué)習(xí)模型D.以上方法都常用11、考慮一個(gè)回歸問(wèn)題,我們使用均方誤差(MSE)作為損失函數(shù)。如果模型的預(yù)測(cè)值與真實(shí)值之間的MSE較大,這意味著什么()A.模型的預(yù)測(cè)非常準(zhǔn)確B.模型存在過(guò)擬合C.模型存在欠擬合D.無(wú)法確定模型的性能12、在一個(gè)金融風(fēng)險(xiǎn)預(yù)測(cè)的項(xiàng)目中,需要根據(jù)客戶(hù)的信用記錄、收入水平、負(fù)債情況等多種因素來(lái)預(yù)測(cè)其違約的可能性。同時(shí),要求模型能夠適應(yīng)不斷變化的市場(chǎng)環(huán)境和新的數(shù)據(jù)特征。以下哪種模型架構(gòu)和訓(xùn)練策略可能是最恰當(dāng)?shù)模浚ǎ〢.構(gòu)建一個(gè)線性回歸模型,簡(jiǎn)單直觀,易于解釋和更新,但可能無(wú)法處理復(fù)雜的非線性關(guān)系B.選擇邏輯回歸模型,結(jié)合正則化技術(shù)防止過(guò)擬合,能夠處理二分類(lèi)問(wèn)題,但對(duì)于多因素的復(fù)雜關(guān)系表達(dá)能力有限C.建立多層感知機(jī)神經(jīng)網(wǎng)絡(luò),通過(guò)調(diào)整隱藏層的數(shù)量和節(jié)點(diǎn)數(shù)來(lái)捕捉復(fù)雜關(guān)系,但訓(xùn)練難度較大,容易過(guò)擬合D.采用基于隨機(jī)森林的集成學(xué)習(xí)方法,結(jié)合特征選擇和超參數(shù)調(diào)優(yōu),能夠處理多因素和非線性關(guān)系,且具有較好的穩(wěn)定性和泛化能力13、在進(jìn)行遷移學(xué)習(xí)時(shí),以下關(guān)于遷移學(xué)習(xí)的應(yīng)用場(chǎng)景和優(yōu)勢(shì),哪一項(xiàng)是不準(zhǔn)確的?()A.當(dāng)目標(biāo)任務(wù)的數(shù)據(jù)量較少時(shí),可以利用在大規(guī)模數(shù)據(jù)集上預(yù)訓(xùn)練的模型進(jìn)行遷移學(xué)習(xí)B.可以將在一個(gè)領(lǐng)域?qū)W習(xí)到的模型參數(shù)直接應(yīng)用到另一個(gè)不同但相關(guān)的領(lǐng)域中C.遷移學(xué)習(xí)能夠加快模型的訓(xùn)練速度,提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只適用于深度學(xué)習(xí)模型,對(duì)于傳統(tǒng)機(jī)器學(xué)習(xí)模型不適用14、在使用支持向量機(jī)(SVM)進(jìn)行分類(lèi)時(shí),核函數(shù)的選擇對(duì)模型性能有重要影響。假設(shè)我們要對(duì)非線性可分的數(shù)據(jù)進(jìn)行分類(lèi)。以下關(guān)于核函數(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.線性核函數(shù)適用于數(shù)據(jù)本身接近線性可分的情況B.多項(xiàng)式核函數(shù)可以擬合復(fù)雜的非線性關(guān)系,但計(jì)算復(fù)雜度較高C.高斯核函數(shù)(RBF核)對(duì)數(shù)據(jù)的分布不敏感,適用于大多數(shù)情況D.選擇核函數(shù)時(shí),只需要考慮模型的復(fù)雜度,不需要考慮數(shù)據(jù)的特點(diǎn)15、某公司希望通過(guò)機(jī)器學(xué)習(xí)來(lái)預(yù)測(cè)產(chǎn)品的需求,以便更有效地進(jìn)行生產(chǎn)計(jì)劃和庫(kù)存管理。數(shù)據(jù)集涵蓋了歷史銷(xiāo)售數(shù)據(jù)、市場(chǎng)趨勢(shì)、季節(jié)因素和經(jīng)濟(jì)指標(biāo)等多方面信息。在這種復(fù)雜的多因素預(yù)測(cè)任務(wù)中,以下哪種模型可能表現(xiàn)出色?()A.線性回歸B.多層感知機(jī)(MLP)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.隨機(jī)森林16、在進(jìn)行機(jī)器學(xué)習(xí)模型的訓(xùn)練時(shí),過(guò)擬合是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)我們正在訓(xùn)練一個(gè)決策樹(shù)模型來(lái)預(yù)測(cè)客戶(hù)是否會(huì)購(gòu)買(mǎi)某種產(chǎn)品,給定了客戶(hù)的個(gè)人信息和購(gòu)買(mǎi)歷史等數(shù)據(jù)。以下關(guān)于過(guò)擬合的描述和解決方法,哪一項(xiàng)是錯(cuò)誤的?()A.過(guò)擬合表現(xiàn)為模型在訓(xùn)練集上表現(xiàn)很好,但在測(cè)試集上表現(xiàn)不佳B.增加訓(xùn)練數(shù)據(jù)的數(shù)量可以有效地減少過(guò)擬合的發(fā)生C.對(duì)決策樹(shù)進(jìn)行剪枝操作,即刪除一些不重要的分支,可以防止過(guò)擬合D.降低模型的復(fù)雜度,例如減少?zèng)Q策樹(shù)的深度,會(huì)導(dǎo)致模型的擬合能力下降,無(wú)法解決過(guò)擬合問(wèn)題17、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以18、在一個(gè)監(jiān)督學(xué)習(xí)問(wèn)題中,我們需要評(píng)估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類(lèi)別不平衡的情況,以下哪種評(píng)估指標(biāo)需要特別謹(jǐn)慎地使用?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)19、在分類(lèi)問(wèn)題中,如果正負(fù)樣本比例嚴(yán)重失衡,以下哪種評(píng)價(jià)指標(biāo)更合適?()A.準(zhǔn)確率B.召回率C.F1值D.均方誤差20、集成學(xué)習(xí)是一種提高機(jī)器學(xué)習(xí)性能的方法。以下關(guān)于集成學(xué)習(xí)的說(shuō)法中,錯(cuò)誤的是:集成學(xué)習(xí)通過(guò)組合多個(gè)弱學(xué)習(xí)器來(lái)構(gòu)建一個(gè)強(qiáng)學(xué)習(xí)器。常見(jiàn)的集成學(xué)習(xí)方法有bagging、boosting和stacking等。那么,下列關(guān)于集成學(xué)習(xí)的說(shuō)法錯(cuò)誤的是()A.bagging方法通過(guò)隨機(jī)采樣訓(xùn)練數(shù)據(jù)來(lái)構(gòu)建多個(gè)不同的學(xué)習(xí)器B.boosting方法通過(guò)逐步調(diào)整樣本權(quán)重來(lái)構(gòu)建多個(gè)不同的學(xué)習(xí)器C.stacking方法將多個(gè)學(xué)習(xí)器的預(yù)測(cè)結(jié)果作為新的特征輸入到一個(gè)元學(xué)習(xí)器中D.集成學(xué)習(xí)方法一定比單個(gè)學(xué)習(xí)器的性能更好21、在一個(gè)聚類(lèi)問(wèn)題中,需要將一組數(shù)據(jù)點(diǎn)劃分到不同的簇中,使得同一簇內(nèi)的數(shù)據(jù)點(diǎn)相似度較高,不同簇之間的數(shù)據(jù)點(diǎn)相似度較低。假設(shè)我們使用K-Means算法進(jìn)行聚類(lèi),以下關(guān)于K-Means算法的初始化步驟,哪一項(xiàng)是正確的?()A.隨機(jī)選擇K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類(lèi)中心B.選擇數(shù)據(jù)集中前K個(gè)數(shù)據(jù)點(diǎn)作為初始聚類(lèi)中心C.計(jì)算數(shù)據(jù)點(diǎn)的均值作為初始聚類(lèi)中心D.以上方法都可以,對(duì)最終聚類(lèi)結(jié)果沒(méi)有影響22、在一個(gè)圖像分類(lèi)任務(wù)中,模型在訓(xùn)練集上表現(xiàn)良好,但在測(cè)試集上性能顯著下降。這種現(xiàn)象可能是由于什么原因?qū)е碌模浚ǎ〢.過(guò)擬合B.欠擬合C.數(shù)據(jù)不平衡D.特征選擇不當(dāng)23、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),我們經(jīng)常使用混淆矩陣來(lái)分析模型的性能。假設(shè)一個(gè)二分類(lèi)問(wèn)題的混淆矩陣如下:()預(yù)測(cè)為正類(lèi)預(yù)測(cè)為負(fù)類(lèi)實(shí)際為正類(lèi)8020實(shí)際為負(fù)類(lèi)1090那么該模型的準(zhǔn)確率是多少()A.80%B.90%C.70%D.85%24、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)圖像中的物體進(jìn)行實(shí)例分割,除了常見(jiàn)的深度學(xué)習(xí)模型,以下哪種技術(shù)可以提高分割的精度?()A.多尺度訓(xùn)練B.數(shù)據(jù)增強(qiáng)C.模型融合D.以上技術(shù)都可以25、某機(jī)器學(xué)習(xí)模型在訓(xùn)練過(guò)程中,損失函數(shù)的值一直沒(méi)有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過(guò)高B.模型過(guò)于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能26、在進(jìn)行模型評(píng)估時(shí),除了準(zhǔn)確率、召回率等指標(biāo),還可以使用混淆矩陣來(lái)更全面地了解模型的性能。假設(shè)我們有一個(gè)二分類(lèi)模型的混淆矩陣。以下關(guān)于混淆矩陣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.混淆矩陣的行表示真實(shí)類(lèi)別,列表示預(yù)測(cè)類(lèi)別B.真陽(yáng)性(TruePositive,TP)表示實(shí)際為正例且被預(yù)測(cè)為正例的樣本數(shù)量C.假陰性(FalseNegative,F(xiàn)N)表示實(shí)際為正例但被預(yù)測(cè)為負(fù)例的樣本數(shù)量D.混淆矩陣只能用于二分類(lèi)問(wèn)題,不能用于多分類(lèi)問(wèn)題27、在一個(gè)多標(biāo)簽分類(lèi)問(wèn)題中,每個(gè)樣本可能同時(shí)屬于多個(gè)類(lèi)別。例如,一篇文章可能同時(shí)涉及科技、娛樂(lè)和體育等多個(gè)主題。以下哪種方法可以有效地處理多標(biāo)簽分類(lèi)任務(wù)?()A.將多標(biāo)簽問(wèn)題轉(zhuǎn)化為多個(gè)二分類(lèi)問(wèn)題,分別進(jìn)行預(yù)測(cè)B.使用一個(gè)單一的分類(lèi)器,輸出多個(gè)概率值表示屬于各個(gè)類(lèi)別的可能性C.對(duì)每個(gè)標(biāo)簽分別訓(xùn)練一個(gè)獨(dú)立的分類(lèi)器D.以上方法都不可行,多標(biāo)簽分類(lèi)問(wèn)題無(wú)法通過(guò)機(jī)器學(xué)習(xí)解決28、當(dāng)處理不平衡數(shù)據(jù)集(即某個(gè)類(lèi)別在數(shù)據(jù)中占比極?。r(shí),以下哪種方法可以提高模型對(duì)少數(shù)類(lèi)別的識(shí)別能力()A.對(duì)多數(shù)類(lèi)別進(jìn)行欠采樣B.對(duì)少數(shù)類(lèi)別進(jìn)行過(guò)采樣C.調(diào)整分類(lèi)閾值D.以上方法都可以29、假設(shè)正在開(kāi)發(fā)一個(gè)用于圖像分割的機(jī)器學(xué)習(xí)模型。以下哪種損失函數(shù)通常用于評(píng)估圖像分割的效果?()A.交叉熵?fù)p失B.均方誤差損失C.Dice損失D.以上損失函數(shù)都可能使用30、在一個(gè)文本分類(lèi)任務(wù)中,使用了樸素貝葉斯算法。樸素貝葉斯算法基于貝葉斯定理,假設(shè)特征之間相互獨(dú)立。然而,在實(shí)際的文本數(shù)據(jù)中,特征之間往往存在一定的相關(guān)性。以下關(guān)于樸素貝葉斯算法在文本分類(lèi)中的應(yīng)用,哪一項(xiàng)是正確的?()A.由于特征不獨(dú)立的假設(shè),樸素貝葉斯算法在文本分類(lèi)中效果很差B.盡管存在特征相關(guān)性,樸素貝葉斯算法在許多文本分類(lèi)任務(wù)中仍然表現(xiàn)良好C.為了提高性能,需要對(duì)文本數(shù)據(jù)進(jìn)行特殊處理,使其滿(mǎn)足特征獨(dú)立的假設(shè)D.樸素貝葉斯算法只適用于特征完全獨(dú)立的數(shù)據(jù)集,不適用于文本分類(lèi)二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)闡述機(jī)器學(xué)習(xí)中的模型評(píng)估方法。分析交叉驗(yàn)證、ROC曲線、AUC值等評(píng)估方法的原理和應(yīng)用場(chǎng)景。2、(本題5分)論述在機(jī)器學(xué)習(xí)模型壓縮中,剪枝和量化的方法和效果。研究如何在保持性能的前提下減少模型參數(shù)和計(jì)算量。3、(本題5分)探討機(jī)器學(xué)習(xí)在醫(yī)療領(lǐng)域的應(yīng)用潛力。如疾病診斷、藥物研發(fā)等,分析數(shù)據(jù)質(zhì)量、隱私保護(hù)等問(wèn)題對(duì)機(jī)器學(xué)習(xí)應(yīng)用的影響。4、(本題5分)論述機(jī)器學(xué)習(xí)在智能物流配送中的應(yīng)用。分析機(jī)器學(xué)習(xí)算法如何用于優(yōu)化物流配送路徑,提高配送效率。討論面臨的挑戰(zhàn)及未來(lái)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 微種植體支抗的牙槽骨影響-洞察分析
- 第07講 有理數(shù)的除法(3個(gè)知識(shí)點(diǎn)+5個(gè)考點(diǎn)+易錯(cuò)分析)解析版
- 頭孢克洛代謝途徑探討-洞察分析
- 虛擬化環(huán)境下的MVC框架-洞察分析
- 網(wǎng)絡(luò)服務(wù)行業(yè)的社會(huì)責(zé)任投資-洞察分析
- 雙方合作的意向書(shū)范本(9篇)
- 網(wǎng)狀結(jié)構(gòu)模型優(yōu)化-洞察分析
- 碳封存長(zhǎng)期安全性研究-洞察分析
- 醫(yī)院消防安全月活動(dòng)總結(jié)范文(7篇)
- 物聯(lián)網(wǎng)技術(shù)實(shí)現(xiàn)護(hù)理服務(wù)的精準(zhǔn)化-洞察分析
- 高考語(yǔ)文新題型+“文學(xué)短評(píng)”相關(guān)寫(xiě)作(真題+技法+練習(xí))
- 汽車(chē)認(rèn)識(shí)實(shí)訓(xùn)課件
- 輪機(jī)工程材料18章總結(jié)
- 公路管理行業(yè)支撐性科研課題立項(xiàng)評(píng)審評(píng)分標(biāo)準(zhǔn)表
- 單招面試技巧范文
- GB/T 5195.1-2006螢石氟化鈣含量的測(cè)定
- (職高)高一語(yǔ)文期末測(cè)試題及答案解析
- 2023年自考傳播學(xué)概論試題及答案
- 2023年青馬工程培訓(xùn)班結(jié)業(yè)考試題庫(kù)
- 紅色簡(jiǎn)約大氣年會(huì)晚會(huì)節(jié)目單
- 2023年住院醫(yī)師規(guī)范化培訓(xùn)胸外科出科考試
評(píng)論
0/150
提交評(píng)論