中國地質大學(武漢)《機器學習與數(shù)據(jù)挖掘》2021-2022學年第一學期期末試卷_第1頁
中國地質大學(武漢)《機器學習與數(shù)據(jù)挖掘》2021-2022學年第一學期期末試卷_第2頁
中國地質大學(武漢)《機器學習與數(shù)據(jù)挖掘》2021-2022學年第一學期期末試卷_第3頁
中國地質大學(武漢)《機器學習與數(shù)據(jù)挖掘》2021-2022學年第一學期期末試卷_第4頁
中國地質大學(武漢)《機器學習與數(shù)據(jù)挖掘》2021-2022學年第一學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁中國地質大學(武漢)《機器學習與數(shù)據(jù)挖掘》

2021-2022學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在進行機器學習模型的訓練時,過擬合是一個常見的問題。假設我們正在訓練一個決策樹模型來預測客戶是否會購買某種產品,給定了客戶的個人信息和購買歷史等數(shù)據(jù)。以下關于過擬合的描述和解決方法,哪一項是錯誤的?()A.過擬合表現(xiàn)為模型在訓練集上表現(xiàn)很好,但在測試集上表現(xiàn)不佳B.增加訓練數(shù)據(jù)的數(shù)量可以有效地減少過擬合的發(fā)生C.對決策樹進行剪枝操作,即刪除一些不重要的分支,可以防止過擬合D.降低模型的復雜度,例如減少決策樹的深度,會導致模型的擬合能力下降,無法解決過擬合問題2、考慮一個推薦系統(tǒng),需要根據(jù)用戶的歷史行為和興趣為其推薦相關的商品或內容。在構建推薦模型時,可以使用基于內容的推薦、協(xié)同過濾推薦或混合推薦等方法。如果用戶的歷史行為數(shù)據(jù)較為稀疏,以下哪種推薦方法可能更合適?()A.基于內容的推薦,利用商品的屬性和用戶的偏好進行推薦B.協(xié)同過濾推薦,基于用戶之間的相似性進行推薦C.混合推薦,結合多種推薦方法的優(yōu)點D.以上方法都不合適,無法進行有效推薦3、在構建一個用于圖像識別的卷積神經網(wǎng)絡(CNN)時,需要考慮許多因素。假設我們正在設計一個用于識別手寫數(shù)字的CNN模型。以下關于CNN設計的描述,哪一項是不正確的?()A.增加卷積層的數(shù)量可以提取更復雜的圖像特征,提高識別準確率B.較大的卷積核尺寸能夠捕捉更廣泛的圖像信息,有助于模型性能提升C.在卷積層后添加池化層可以減少特征數(shù)量,降低計算復雜度,同時保持主要特征D.使用合適的激活函數(shù)如ReLU可以引入非線性,增強模型的表達能力4、在監(jiān)督學習中,常見的算法有線性回歸、邏輯回歸、支持向量機等。以下關于監(jiān)督學習算法的說法中,錯誤的是:線性回歸用于預測連續(xù)值,邏輯回歸用于分類任務。支持向量機通過尋找一個最優(yōu)的超平面來分類數(shù)據(jù)。那么,下列關于監(jiān)督學習算法的說法錯誤的是()A.線性回歸的模型簡單,容易理解,但對于復雜的數(shù)據(jù)集可能效果不佳B.邏輯回歸可以處理二分類和多分類問題,并且可以輸出概率值C.支持向量機在小樣本數(shù)據(jù)集上表現(xiàn)出色,但對于大規(guī)模數(shù)據(jù)集計算成本較高D.監(jiān)督學習算法的性能只取決于模型的復雜度,與數(shù)據(jù)的特征選擇無關5、假設要預測一個時間序列數(shù)據(jù)中的突然變化點,以下哪種方法可能是最合適的?()A.滑動窗口分析,通過比較相鄰窗口的數(shù)據(jù)差異來檢測變化,但窗口大小選擇困難B.基于統(tǒng)計的假設檢驗,如t檢驗或方差分析,但對數(shù)據(jù)分布有要求C.變點檢測算法,如CUSUM或Pettitt檢驗,專門用于檢測變化點,但可能對噪聲敏感D.深度學習中的異常檢測模型,能夠自動學習變化模式,但需要大量數(shù)據(jù)訓練6、在一個文本生成任務中,例如生成詩歌或故事,以下哪種方法常用于生成自然語言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經網(wǎng)絡的方法,如TransformerD.以上都不是7、機器學習在自然語言處理領域有廣泛的應用。以下關于機器學習在自然語言處理中的說法中,錯誤的是:機器學習可以用于文本分類、情感分析、機器翻譯等任務。常見的自然語言處理算法有詞袋模型、TF-IDF、深度學習模型等。那么,下列關于機器學習在自然語言處理中的說法錯誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語法結構B.TF-IDF可以衡量一個詞在文檔中的重要性C.深度學習模型在自然語言處理中表現(xiàn)出色,但需要大量的訓練數(shù)據(jù)和計算資源D.機器學習在自然語言處理中的應用已經非常成熟,不需要進一步的研究和發(fā)展8、某公司希望通過機器學習來預測產品的需求,以便更有效地進行生產計劃和庫存管理。數(shù)據(jù)集涵蓋了歷史銷售數(shù)據(jù)、市場趨勢、季節(jié)因素和經濟指標等多方面信息。在這種復雜的多因素預測任務中,以下哪種模型可能表現(xiàn)出色?()A.線性回歸B.多層感知機(MLP)C.循環(huán)神經網(wǎng)絡(RNN)D.隨機森林9、想象一個市場營銷的項目,需要根據(jù)客戶的購買歷史、瀏覽行為和人口統(tǒng)計信息來預測其未來的購買傾向。同時,要能夠解釋模型的決策依據(jù)以指導營銷策略的制定。以下哪種模型和策略可能是最適用的?()A.建立邏輯回歸模型,通過系數(shù)分析解釋變量的影響,但對于復雜的非線性關系可能不敏感B.運用決策樹集成算法,如梯度提升樹(GradientBoostingTree),準確性較高,且可以通過特征重要性評估解釋模型,但局部解釋性相對較弱C.采用深度學習中的多層卷積神經網(wǎng)絡,預測能力強,但幾乎無法提供直觀的解釋D.構建基于規(guī)則的分類器,明確的規(guī)則易于理解,但可能無法處理復雜的數(shù)據(jù)模式和不確定性10、在進行機器學習模型評估時,我們經常使用混淆矩陣來分析模型的性能。假設一個二分類問題的混淆矩陣如下:()預測為正類預測為負類實際為正類8020實際為負類1090那么該模型的準確率是多少()A.80%B.90%C.70%D.85%11、在一個強化學習場景中,智能體需要在一個復雜的環(huán)境中學習最優(yōu)策略。如果環(huán)境的獎勵信號稀疏,以下哪種技術可以幫助智能體更好地學習?()A.獎勵塑造B.策略梯度估計的改進C.經驗回放D.以上技術都可以12、在進行自動特征工程時,以下關于自動特征工程方法的描述,哪一項是不準確的?()A.基于深度學習的自動特征學習可以從原始數(shù)據(jù)中自動提取有意義的特征B.遺傳算法可以用于搜索最優(yōu)的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率13、當使用支持向量機(SVM)進行分類任務時,如果數(shù)據(jù)不是線性可分的,通常會采用以下哪種方法()A.增加樣本數(shù)量B.降低維度C.使用核函數(shù)將數(shù)據(jù)映射到高維空間D.更換分類算法14、特征工程是機器學習中的重要環(huán)節(jié)。以下關于特征工程的說法中,錯誤的是:特征工程包括特征提取、特征選擇和特征轉換等步驟。目的是從原始數(shù)據(jù)中提取出有效的特征,提高模型的性能。那么,下列關于特征工程的說法錯誤的是()A.特征提取是從原始數(shù)據(jù)中自動學習特征表示的過程B.特征選擇是從眾多特征中選擇出對模型性能有重要影響的特征C.特征轉換是將原始特征進行變換,以提高模型的性能D.特征工程只在傳統(tǒng)的機器學習算法中需要,深度學習算法不需要進行特征工程15、在進行遷移學習時,以下關于遷移學習的應用場景和優(yōu)勢,哪一項是不準確的?()A.當目標任務的數(shù)據(jù)量較少時,可以利用在大規(guī)模數(shù)據(jù)集上預訓練的模型進行遷移學習B.可以將在一個領域學習到的模型參數(shù)直接應用到另一個不同但相關的領域中C.遷移學習能夠加快模型的訓練速度,提高模型在新任務上的性能D.遷移學習只適用于深度學習模型,對于傳統(tǒng)機器學習模型不適用16、在進行數(shù)據(jù)預處理時,異常值的處理是一個重要環(huán)節(jié)。假設我們有一個包含員工工資數(shù)據(jù)的數(shù)據(jù)集。以下關于異常值處理的方法,哪一項是不正確的?()A.可以通過可視化數(shù)據(jù)分布,直觀地發(fā)現(xiàn)異常值B.基于統(tǒng)計學方法,如三倍標準差原則,可以識別出可能的異常值C.直接刪除所有的異常值,以保證數(shù)據(jù)的純凈性D.對異常值進行修正或替換,使其更符合數(shù)據(jù)的整體分布17、某研究團隊正在開發(fā)一個用于醫(yī)療圖像診斷的機器學習模型,需要提高模型對小病變的檢測能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強的強度B.使用更復雜的模型架構C.引入注意力機制D.以上方法都可以18、假設正在研究一個時間序列預測問題,數(shù)據(jù)具有季節(jié)性和趨勢性。以下哪種模型可以同時處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以19、在自然語言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉換為向量B.進行詞性標注C.提取文本特征D.以上都是20、深度學習是機器學習的一個重要分支,它利用深度神經網(wǎng)絡進行學習。以下關于深度學習的說法中,錯誤的是:深度神經網(wǎng)絡具有多層結構,可以自動學習數(shù)據(jù)的特征表示。深度學習在圖像識別、語音識別等領域取得了巨大的成功。那么,下列關于深度學習的說法錯誤的是()A.卷積神經網(wǎng)絡是一種專門用于處理圖像數(shù)據(jù)的深度神經網(wǎng)絡B.循環(huán)神經網(wǎng)絡適用于處理序列數(shù)據(jù),如文本、時間序列等C.深度神經網(wǎng)絡的訓練需要大量的計算資源和時間D.深度學習算法可以自動學習到最優(yōu)的特征表示,不需要人工設計特征二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述在智能倉儲中,機器學習的應用。2、(本題5分)簡述監(jiān)督學習和無監(jiān)督學習的區(qū)別。3、(本題5分)解釋如何使用機器學習進行庫存管理。三、應用題(本大題共5個小題,共25分)1、(本題5分)利用GAN生成新的廣告創(chuàng)意。2、(本題5分)依據(jù)人類學調查數(shù)據(jù)研究人類文化和社會結構。3、(本題5分)運用交叉驗證方法選擇合適的正則化參數(shù)。4、(本題5分)通過分類算法判斷信用卡交易是否為欺詐行為。5、(本題5分)開

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論