安徽省淮北市同仁中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第1頁
安徽省淮北市同仁中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第2頁
安徽省淮北市同仁中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第3頁
安徽省淮北市同仁中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第4頁
安徽省淮北市同仁中學(xué)2025屆高考數(shù)學(xué)必刷試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省淮北市同仁中學(xué)2025屆高考數(shù)學(xué)必刷試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.2.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.3.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.24.已知函數(shù)與的圖象有一個橫坐標(biāo)為的交點,若函數(shù)的圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個零點,則的取值范圍是()A. B.C. D.5.是拋物線上一點,是圓關(guān)于直線的對稱圓上的一點,則最小值是()A. B. C. D.6.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件8.已知集合,,則()A. B.C. D.9.是虛數(shù)單位,則()A.1 B.2 C. D.10.已知函數(shù),方程有四個不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.秦九韶算法是南宋時期數(shù)學(xué)家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為______.14.成都市某次高三統(tǒng)考,成績X經(jīng)統(tǒng)計分析,近似服從正態(tài)分布,且,若該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為_____.15.等邊的邊長為2,則在方向上的投影為________.16.設(shè)實數(shù)滿足約束條件,則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),為實數(shù),且.(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).18.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個動點,為坐標(biāo)原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.19.(12分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標(biāo);若不存在,請說明理由.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.21.(12分)已知為坐標(biāo)原點,單位圓與角終邊的交點為,過作平行于軸的直線,設(shè)與終邊所在直線的交點為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.22.(10分)如圖,在矩形中,,,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結(jié).(Ⅰ)求證:平面平面;(Ⅱ)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.2、D【解析】

利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為,所以當(dāng)時,增區(qū)間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點在于把握正弦函數(shù)的單調(diào)性,同時對于整體法的應(yīng)用,使問題化繁為簡,難度較易.3、B【解析】

求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.4、A【解析】

根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標(biāo)為的交點,則,,,,,若函數(shù)圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋叮瑒t,所以當(dāng)時,,在有且僅有5個零點,,.故選:A.【點睛】本題考查三角函數(shù)圖象的性質(zhì)、三角函數(shù)的平移伸縮以及零點個數(shù)問題,考查轉(zhuǎn)化思想和計算能力.5、C【解析】

求出點關(guān)于直線的對稱點的坐標(biāo),進而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點關(guān)于直線的對稱點為點,則,整理得,解得,即點,所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點,則,當(dāng)時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計算能力,屬于中等題.6、B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.7、B【解析】

先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎(chǔ).解題時可根據(jù)條件與結(jié)論中參數(shù)的取值范圍進行判斷.8、A【解析】

根據(jù)對數(shù)性質(zhì)可知,再根據(jù)集合的交集運算即可求解.【詳解】∵,集合,∴由交集運算可得.故選:A.【點睛】本題考查由對數(shù)的性質(zhì)比較大小,集合交集的簡單運算,屬于基礎(chǔ)題.9、C【解析】

由復(fù)數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.10、A【解析】

作出函數(shù)的圖象,得到,把函數(shù)有零點轉(zhuǎn)化為與在(2,4]上有交點,利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設(shè)過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數(shù)零點的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.11、C【解析】

由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對應(yīng)點坐標(biāo)即得【詳解】解析:,,對應(yīng)點為,在第三象限.故選:C.【點睛】本題考查復(fù)數(shù)的除法運算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.12、D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復(fù)數(shù)模的計算,考驗計算,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1055【解析】

模擬執(zhí)行程序框圖中的程序,即可求得結(jié)果.【詳解】模擬執(zhí)行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.【點睛】本題考查程序框圖的模擬執(zhí)行,屬基礎(chǔ)題.14、.【解析】

根據(jù)正態(tài)分布密度曲線性質(zhì),結(jié)合求得,即可得解.【詳解】根據(jù)正態(tài)分布,且,所以故該市有人參考,則估計成都市該次統(tǒng)考中成績大于分的人數(shù)為.故答案為:.【點睛】此題考查正態(tài)分布密度曲線性質(zhì)的理解辨析,根據(jù)曲線的對稱性求解概率,根據(jù)總?cè)藬?shù)求解成績大于114的人數(shù).15、【解析】

建立直角坐標(biāo)系,結(jié)合向量的坐標(biāo)運算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,由題意可知:,,,則:,,且,,據(jù)此可知在方向上的投影為.【點睛】本題主要考查平面向量數(shù)量積的坐標(biāo)運算,向量投影的定義與計算等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.16、【解析】

試題分析:作出不等式組所表示的平面區(qū)域如圖,當(dāng)直線過點時,最大,且考點:線性規(guī)劃.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】

(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【詳解】當(dāng)時,,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,故當(dāng)時,函數(shù)取得極大值,沒有極小值;函數(shù)的增區(qū)間為,減區(qū)間為,,當(dāng)時,,在上單調(diào)遞增,即函數(shù)的值域為;當(dāng)時,,在上單調(diào)遞減,即函數(shù)的值域為;當(dāng)時,易得時,,在上單調(diào)遞增,時,,在上單調(diào)遞減,故當(dāng)時,函數(shù)取得最大值,最小值為,中最小的,當(dāng)時,,最小值;當(dāng),,最小值;綜上,當(dāng)時,函數(shù)的值域為,當(dāng)時,函數(shù)的值域,當(dāng)時,函數(shù)的值域為,當(dāng)時,函數(shù)的值域為.【點睛】本題主要考查利用導(dǎo)數(shù)求單調(diào)區(qū)間和極值,以及利用導(dǎo)數(shù)研究含參函數(shù)在給定區(qū)間的值域,考查學(xué)生的運算求解能力,體現(xiàn)了分類討論的數(shù)學(xué)思想.18、(Ⅰ)(Ⅱ)1【解析】

(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設(shè)直線,則直線,聯(lián)立,得,聯(lián)立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設(shè)直線,則直線,聯(lián)立,整理得,所以,聯(lián)立,整理得,設(shè),則,所以,所以.【點睛】本題主要考查橢圓標(biāo)準(zhǔn)方程的求法以及直線與橢圓的綜合問題,考查學(xué)生的運算求解能力.19、(1)或.(2)存在,;【解析】

(1)根據(jù)動圓過,兩點,可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設(shè),由動圓與直線相切可得動圓的半徑為;又由,及垂徑定理即可確定的值,進而確定圓的方程.(2)方法一:設(shè),可得圓的半徑為,根據(jù),可得方程為并化簡可得的軌跡方程為.設(shè),,可得的中點,進而由兩點間距離公式表示出半徑,表示出到軸的距離,代入化簡即可求得的值,進而確定所過定點的坐標(biāo);方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點的坐標(biāo),根據(jù)到軸的距離可得等量關(guān)系,進而確定所過定點的坐標(biāo).【詳解】(1)因為過點,,所以圓心在的垂直平分線上.由已知的方程為,且,關(guān)于于坐標(biāo)原點對稱,所以在直線上,故可設(shè).因為與直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設(shè),由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設(shè),,則得,的中點,則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡得,即,故當(dāng)時,①式恒成立.所以存在定點,使得以為直徑的圓與軸相切.法二:設(shè),由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設(shè),因為拋物線的焦點坐標(biāo)為,點在拋物線上,所以,線段的中點的坐標(biāo)為,則到軸的距離為,而,故以為徑的圓與軸切,所以當(dāng)點與重合時,符合題意,所以存在定點,使得以為直徑的圓與軸相切.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程求法,動點軌跡方程的求法,拋物線定義及定點問題的解法綜合應(yīng)用,屬于難題.20、(1)..(2)最大距離為.【解析】

(1)直接利用極坐標(biāo)方程和參數(shù)方程的公式計算得到答案.(2)曲線的參數(shù)方程為,設(shè),計算點到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標(biāo)方程為,即.直線的直角坐標(biāo)方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設(shè),,則到直線的距離為,所以線段的中點到直線的最大距離為.【點睛】本題考查了極坐標(biāo)方程,參數(shù)方程,距離的最值問題,意在考查學(xué)生的計算能力.21、(1);(2).【解析】

(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因為,,所以,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論