湖北省荊、荊、襄、宜四地七校2025屆高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第1頁(yè)
湖北省荊、荊、襄、宜四地七校2025屆高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第2頁(yè)
湖北省荊、荊、襄、宜四地七校2025屆高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第3頁(yè)
湖北省荊、荊、襄、宜四地七校2025屆高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第4頁(yè)
湖北省荊、荊、襄、宜四地七校2025屆高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省“荊、荊、襄、宜四地七校2025屆高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.82.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.3.中國(guó)古建筑借助榫卯將木構(gòu)件連接起來(lái),構(gòu)件的凸出部分叫榫頭,凹進(jìn)部分叫卯眼,圖中木構(gòu)件右邊的小長(zhǎng)方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長(zhǎng)方體,則咬合時(shí)帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.4.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.5.已知數(shù)列的通項(xiàng)公式為,將這個(gè)數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個(gè)數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.6.設(shè)直線過(guò)點(diǎn),且與圓:相切于點(diǎn),那么()A. B.3 C. D.17.如圖是一個(gè)算法流程圖,則輸出的結(jié)果是()A. B. C. D.8.已知函數(shù)的圖象的一條對(duì)稱(chēng)軸為,將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長(zhǎng)度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.9.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或410.函數(shù)的部分圖象如圖所示,則的單調(diào)遞增區(qū)間為()A. B.C. D.11.執(zhí)行下面的程序框圖,如果輸入,,則計(jì)算機(jī)輸出的數(shù)是()A. B. C. D.12.在直角中,,,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一塊土地上種植某種農(nóng)作物,連續(xù)5年的產(chǎn)量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農(nóng)作物的年平均產(chǎn)量是______噸.14.在三棱錐中,三條側(cè)棱兩兩垂直,,則三棱錐外接球的表面積的最小值為_(kāi)_______.15.若變量,滿(mǎn)足約束條件則的最大值是______.16.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱(chēng)粽籺,俗稱(chēng)“粽子”,古稱(chēng)“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說(shuō)這是為了紀(jì)念戰(zhàn)國(guó)時(shí)期楚國(guó)大臣、愛(ài)國(guó)主義詩(shī)人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長(zhǎng)為1的正三角形構(gòu)成的,將它沿虛線折起來(lái),可以得到如圖所示粽子形狀的六面體,則該六面體的體積為_(kāi)___;若該六面體內(nèi)有一球,則該球體積的最大值為_(kāi)___.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列{an}滿(mǎn)足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:Sn.18.(12分)在平面直角坐標(biāo)系中,已知橢圓的短軸長(zhǎng)為,直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為.當(dāng)與連線的斜率為時(shí),直線的傾斜角為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是以為直徑的圓上的任意一點(diǎn),求證:19.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.20.(12分)已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點(diǎn)C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.21.(12分)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點(diǎn),求最大時(shí),直線l的直角坐標(biāo)方程.22.(10分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個(gè)交點(diǎn)為,且點(diǎn)極徑.極角(1)求曲線的極坐標(biāo)方程與點(diǎn)的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(diǎn)(異于原點(diǎn)),求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐?,所以,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2、B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.3、A【解析】

詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進(jìn)去的,即俯視圖中應(yīng)有一不可見(jiàn)的長(zhǎng)方形,且俯視圖應(yīng)為對(duì)稱(chēng)圖形故俯視圖為故選A.點(diǎn)睛:本題主要考查空間幾何體的三視圖,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題。4、B【解析】

由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時(shí),,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.5、D【解析】

由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點(diǎn)睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6、B【解析】

過(guò)點(diǎn)的直線與圓:相切于點(diǎn),可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過(guò)點(diǎn)的直線與圓:相切于點(diǎn),∴;∴;故選:B.【點(diǎn)睛】本小題主要考查向量數(shù)量積的計(jì)算,考查圓的方程,屬于基礎(chǔ)題.7、A【解析】

執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿(mǎn)足判斷條件,;第2次循環(huán):滿(mǎn)足判斷條件,;第3次循環(huán):滿(mǎn)足判斷條件,;不滿(mǎn)足判斷條件,輸出計(jì)算結(jié)果,故選A.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計(jì)算與輸出,其中解答中執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.8、C【解析】

根據(jù)輔助角公式化簡(jiǎn)三角函數(shù)式,結(jié)合為函數(shù)的一條對(duì)稱(chēng)軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡(jiǎn)可得,因?yàn)闉楹瘮?shù)圖象的一條對(duì)稱(chēng)軸,代入可得,即,化簡(jiǎn)可解得,即,所以將函數(shù)的圖象向右平行移動(dòng)個(gè)單位長(zhǎng)度可得,則,故選:C.【點(diǎn)睛】本題考查了輔助角化簡(jiǎn)三角函數(shù)式的應(yīng)用,三角函數(shù)對(duì)稱(chēng)軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.9、C【解析】

對(duì)a進(jìn)行分類(lèi)討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.【點(diǎn)睛】本題主要考查指數(shù)函數(shù)的值域問(wèn)題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).10、D【解析】

由圖象可以求出周期,得到,根據(jù)圖象過(guò)點(diǎn)可求,根據(jù)正弦型函數(shù)的性質(zhì)求出單調(diào)增區(qū)間即可.【詳解】由圖象知,所以,,又圖象過(guò)點(diǎn),所以,故可取,所以令,解得所以函數(shù)的單調(diào)遞增區(qū)間為故選:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),利用“五點(diǎn)法”求函數(shù)解析式,屬于中檔題.11、B【解析】

先明確該程序框圖的功能是計(jì)算兩個(gè)數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計(jì)算即可.【詳解】本程序框圖的功能是計(jì)算,中的最大公約數(shù),所以,,,故當(dāng)輸入,,則計(jì)算機(jī)輸出的數(shù)是57.故選:B.【點(diǎn)睛】本題考查程序框圖的功能,做此類(lèi)題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.12、C【解析】

在直角三角形ABC中,求得,再由向量的加減運(yùn)算,運(yùn)用平面向量基本定理,結(jié)合向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方,化簡(jiǎn)計(jì)算即可得到所求值.【詳解】在直角中,,,,,

,

若,則故選C.【點(diǎn)睛】本題考查向量的加減運(yùn)算和數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,考查運(yùn)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】

根據(jù)已知數(shù)據(jù)直接計(jì)算即得.【詳解】由題得,.故答案為:10【點(diǎn)睛】本題考查求平均數(shù),是基礎(chǔ)題.14、【解析】

設(shè),可表示出,由三棱錐性質(zhì)得這三條棱長(zhǎng)的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設(shè)則,由兩兩垂直知三棱錐的三條棱的棱長(zhǎng)的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當(dāng)時(shí),.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和.15、9【解析】

做出滿(mǎn)足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標(biāo)函數(shù)過(guò)點(diǎn)時(shí)取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.16、【解析】

(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對(duì)稱(chēng)性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個(gè)三角形面積是,由對(duì)稱(chēng)性可知該六面是由兩個(gè)正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對(duì)稱(chēng)性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),由于圖像的對(duì)稱(chēng)性,內(nèi)部的小球要是體積最大,就是球要和六個(gè)面相切,連接球心和五個(gè)頂點(diǎn),把六面體分成了六個(gè)三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【點(diǎn)睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計(jì)算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達(dá)到最大,考查運(yùn)算求解能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(Ⅱ)證明見(jiàn)解析【解析】

(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對(duì)分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯(cuò)位相減法求出,運(yùn)用分析法證明即可.【詳解】(Ⅰ),當(dāng)為奇數(shù)時(shí),,又由,得,當(dāng)為偶數(shù)時(shí),,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點(diǎn)睛】本題主要考查了由遞推公式求通項(xiàng)公式,錯(cuò)位相減法求前項(xiàng)和,分析法證明不等式,考查了分類(lèi)討論的思想,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.18、(1);(2)詳見(jiàn)解析.【解析】

(1)由短軸長(zhǎng)可知,設(shè),,由設(shè)而不求法作差即可求得,將相應(yīng)值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時(shí)候,成立,當(dāng)直線斜率存在時(shí),設(shè)出直線方程,與橢圓聯(lián)立,結(jié)合中點(diǎn)坐標(biāo)公式,弦長(zhǎng)公式,得到與的關(guān)系,將表示出來(lái),結(jié)合基本不等式求最值,證明最后的結(jié)果【詳解】解:(1)由已知,得由,兩式相減,得根據(jù)已知條件有,當(dāng)時(shí),∴,即∴橢圓的標(biāo)準(zhǔn)方程為(2)當(dāng)直線斜率不存在時(shí),,不等式成立.當(dāng)直線斜率存在時(shí),設(shè)由得∴,∴由化簡(jiǎn),得∴令,則當(dāng)且僅當(dāng)時(shí)取等號(hào)∴∵∴當(dāng)且僅當(dāng)時(shí)取等號(hào)綜上,【點(diǎn)睛】本題為直線與橢圓的綜合應(yīng)用,考查了橢圓方程的求法,點(diǎn)差法處理多未知量問(wèn)題,能夠利用一元二次方程的知識(shí)轉(zhuǎn)化處理復(fù)雜的計(jì)算形式,要求學(xué)生計(jì)算能力過(guò)關(guān),為較難題19、(1);(2).【解析】

(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個(gè)平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個(gè)法向量,由得,取,則因?yàn)槠矫娴囊粋€(gè)法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個(gè)法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.20、(1)y2=6x(2).【解析】

(1)根據(jù)拋物線定義,寫(xiě)出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點(diǎn)坐標(biāo)表示出|AB|和點(diǎn)到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點(diǎn)F(,0)到準(zhǔn)線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設(shè)線段AB的中點(diǎn)為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個(gè)解,所以AB的垂直平分線與x軸的交點(diǎn)C為定點(diǎn),且點(diǎn)C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個(gè)實(shí)根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當(dāng)且僅當(dāng)9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論