版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共8頁濟(jì)南大學(xué)《機(jī)器視覺與模式》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息2、計(jì)算機(jī)視覺中的視頻分析需要對連續(xù)的圖像幀進(jìn)行處理和理解。假設(shè)要分析一段監(jiān)控視頻中的人群行為,包括行走方向、聚集和分散等。以下哪種視頻分析技術(shù)在處理這種復(fù)雜的群體行為時最為有效?()A.幀間差分法B.背景減除法C.光流法結(jié)合軌跡分析D.深度學(xué)習(xí)的行為識別模型3、計(jì)算機(jī)視覺在工業(yè)檢測中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測中的計(jì)算機(jī)視覺應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以使用機(jī)器視覺系統(tǒng)對零件進(jìn)行實(shí)時檢測,快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動學(xué)習(xí)正常零件和缺陷零件的特征差異,實(shí)現(xiàn)準(zhǔn)確的缺陷檢測C.工業(yè)檢測中的計(jì)算機(jī)視覺系統(tǒng)需要具備高度的準(zhǔn)確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計(jì)算機(jī)視覺在工業(yè)檢測中只能檢測外觀缺陷,對于零件的內(nèi)部結(jié)構(gòu)和性能無法進(jìn)行評估4、在計(jì)算機(jī)視覺的目標(biāo)計(jì)數(shù)任務(wù)中,統(tǒng)計(jì)圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要統(tǒng)計(jì)一個果園中蘋果的數(shù)量,以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于圖像分割和對象識別的方法,先分割出每個蘋果,然后進(jìn)行計(jì)數(shù)B.利用深度學(xué)習(xí)中的回歸模型直接預(yù)測蘋果的數(shù)量C.目標(biāo)計(jì)數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準(zhǔn)確計(jì)數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標(biāo)計(jì)數(shù)的準(zhǔn)確性5、計(jì)算機(jī)視覺中的眼底圖像分析對于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準(zhǔn)確的是()A.可以檢測眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學(xué)習(xí)方法在眼底圖像分析中能夠自動提取特征和進(jìn)行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學(xué)知識標(biāo)注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷6、在計(jì)算機(jī)視覺的醫(yī)學(xué)圖像分析中,例如對腫瘤的檢測和分割。假設(shè)醫(yī)學(xué)圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預(yù)處理方法可能有助于提高后續(xù)分析的準(zhǔn)確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)7、計(jì)算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定目標(biāo)。假設(shè)要跟蹤一個在復(fù)雜場景中運(yùn)動的人物,以下關(guān)于目標(biāo)跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準(zhǔn)確預(yù)測目標(biāo)的運(yùn)動軌跡,但對目標(biāo)外觀變化適應(yīng)性差B.基于粒子濾波的跟蹤算法計(jì)算復(fù)雜度低,適用于實(shí)時跟蹤要求高的場景C.基于深度學(xué)習(xí)的跟蹤算法需要大量的訓(xùn)練數(shù)據(jù),并且在目標(biāo)被遮擋時容易丟失D.目標(biāo)跟蹤算法只要在初始幀中準(zhǔn)確檢測到目標(biāo),就能夠在后續(xù)幀中一直保持跟蹤的準(zhǔn)確性8、在計(jì)算機(jī)視覺中,視頻摘要生成是從長視頻中提取關(guān)鍵內(nèi)容并生成簡潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實(shí)用價值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失9、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)任務(wù)是估計(jì)人體或物體在三維空間中的姿態(tài)。假設(shè)要估計(jì)一個人體模特的姿態(tài)。以下關(guān)于姿態(tài)估計(jì)的描述,哪一項(xiàng)是不正確的?()A.可以通過關(guān)鍵點(diǎn)檢測和關(guān)節(jié)角度計(jì)算來估計(jì)人體姿態(tài)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)可以直接預(yù)測人體姿態(tài)的參數(shù)C.姿態(tài)估計(jì)在虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用中具有重要作用D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受人體遮擋和復(fù)雜動作的影響10、計(jì)算機(jī)視覺在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見解。假設(shè)要分析一場足球比賽中球員的跑動軌跡和動作。以下關(guān)于計(jì)算機(jī)視覺在體育賽事中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過對視頻的分析,自動跟蹤球員的位置和運(yùn)動軌跡B.能夠?qū)η騿T的動作進(jìn)行分類,如傳球、射門和防守C.計(jì)算機(jī)視覺在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)11、計(jì)算機(jī)視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計(jì)的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到圖像的多層次特征,具有很強(qiáng)的表達(dá)能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標(biāo)檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要12、計(jì)算機(jī)視覺在無人駕駛中的應(yīng)用需要對周圍環(huán)境進(jìn)行快速準(zhǔn)確的感知。假設(shè)車輛要在復(fù)雜的城市道路環(huán)境中行駛,以下哪種傳感器的數(shù)據(jù)融合可能對提高環(huán)境感知的可靠性至關(guān)重要?()A.攝像頭與激光雷達(dá)B.攝像頭與毫米波雷達(dá)C.激光雷達(dá)與超聲波傳感器D.以上都有可能13、在計(jì)算機(jī)視覺中,以下哪種方法常用于圖像的顯著目標(biāo)檢測中的高層語義信息利用?()A.深度學(xué)習(xí)B.圖模型C.注意力機(jī)制D.以上都是14、在計(jì)算機(jī)視覺的自動駕駛應(yīng)用中,車輛需要準(zhǔn)確識別道路標(biāo)志、交通信號燈和其他車輛的狀態(tài)。對于實(shí)時性和準(zhǔn)確性要求極高的場景,以下哪種傳感器融合技術(shù)能夠?yàn)檐囕v提供更全面和可靠的環(huán)境感知?()A.攝像頭與激光雷達(dá)的融合B.毫米波雷達(dá)與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是15、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)任務(wù),確定物體在空間中的位置和方向。假設(shè)要估計(jì)一個機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計(jì)方法的描述,正確的是:()A.基于幾何模型的姿態(tài)估計(jì)方法在復(fù)雜環(huán)境中總是能夠準(zhǔn)確估計(jì)姿態(tài)B.深度學(xué)習(xí)中的端到端姿態(tài)估計(jì)網(wǎng)絡(luò)不需要對物體的結(jié)構(gòu)和運(yùn)動有先驗(yàn)了解C.姿態(tài)估計(jì)的結(jié)果不受相機(jī)參數(shù)和拍攝角度的影響D.結(jié)合多種傳感器數(shù)據(jù)和深度學(xué)習(xí)的方法可以提高姿態(tài)估計(jì)的精度和魯棒性16、計(jì)算機(jī)視覺在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測農(nóng)作物的生長狀況。假設(shè)要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲害的程度B.不同農(nóng)作物品種和生長階段對病蟲害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對計(jì)算機(jī)視覺的應(yīng)用沒有挑戰(zhàn)17、在計(jì)算機(jī)視覺的目標(biāo)識別任務(wù)中,假設(shè)要識別不同種類的水果。以下關(guān)于應(yīng)對類內(nèi)差異和類間相似性的策略,哪一項(xiàng)是不正確的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復(fù)雜度,避免過度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動適應(yīng)能力18、計(jì)算機(jī)視覺在虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)中有重要作用。假設(shè)要在VR環(huán)境中實(shí)現(xiàn)真實(shí)感的物體交互,以下哪種技術(shù)可能對準(zhǔn)確感知物體的位置和姿態(tài)至關(guān)重要?()A.立體視覺B.光場成像C.結(jié)構(gòu)光D.運(yùn)動捕捉19、計(jì)算機(jī)視覺中的表情識別旨在識別圖像或視頻中人物的表情。假設(shè)要在一個情感分析系統(tǒng)中準(zhǔn)確識別表情,以下關(guān)于表情識別方法的描述,正確的是:()A.基于幾何特征的表情識別方法對表情的細(xì)微變化不敏感,識別準(zhǔn)確率低B.基于紋理特征的表情識別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在表情識別中能夠?qū)W習(xí)到全局和局部的特征,但對大規(guī)模數(shù)據(jù)集依賴嚴(yán)重D.表情識別系統(tǒng)只適用于正面清晰的人臉表情,對于側(cè)臉和遮擋的表情無法識別20、在計(jì)算機(jī)視覺的圖像超分辨率任務(wù)中,假設(shè)要將一張低分辨率圖像恢復(fù)為高分辨率圖像。以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的方法簡單快速,但恢復(fù)出的圖像細(xì)節(jié)不夠清晰B.基于深度學(xué)習(xí)的方法能夠生成逼真的高分辨率圖像,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源C.圖像超分辨率技術(shù)可以無限制地提高圖像的分辨率,不受硬件限制D.所有的圖像超分辨率方法都能夠完全恢復(fù)出原始高分辨率圖像的所有信息21、對于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對圖像進(jìn)行簡單的分類,不進(jìn)行深入的語義分析D.隨機(jī)猜測圖像的語義22、在計(jì)算機(jī)視覺中,深度估計(jì)是確定場景中物體距離相機(jī)的距離。以下關(guān)于深度估計(jì)的說法,錯誤的是()A.可以通過立體視覺、結(jié)構(gòu)光或飛行時間等技術(shù)來獲取深度信息B.深度學(xué)習(xí)方法在單目深度估計(jì)中取得了顯著進(jìn)展C.深度估計(jì)對于三維重建、虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用具有重要意義D.深度估計(jì)的結(jié)果總是非常精確,不需要進(jìn)行后處理和優(yōu)化23、在計(jì)算機(jī)視覺的姿態(tài)估計(jì)任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)我們要估計(jì)一個機(jī)器人手臂的姿態(tài),以下哪種技術(shù)通常被用于獲取準(zhǔn)確的姿態(tài)信息?()A.基于視覺標(biāo)記的姿態(tài)估計(jì)B.基于深度學(xué)習(xí)的姿態(tài)估計(jì)C.基于幾何約束的姿態(tài)估計(jì)D.基于慣性測量單元(IMU)的姿態(tài)估計(jì)24、在計(jì)算機(jī)視覺的全景圖像拼接任務(wù)中,假設(shè)要將多張拍攝的局部圖像拼接成一幅完整的全景圖。以下關(guān)于圖像匹配和融合的步驟,哪一項(xiàng)是容易出錯的?()A.準(zhǔn)確找到相鄰圖像之間的特征點(diǎn)進(jìn)行匹配B.對匹配后的圖像進(jìn)行幾何校正和投影變換C.直接將圖像拼接在一起,不進(jìn)行任何過渡處理D.采用合適的融合算法,消除拼接處的明顯痕跡25、在計(jì)算機(jī)視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進(jìn)行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強(qiáng)和虛擬場景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實(shí)性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制26、計(jì)算機(jī)視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機(jī)B.工業(yè)線陣相機(jī)C.手機(jī)攝像頭D.監(jiān)控攝像頭27、計(jì)算機(jī)視覺中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動信息。假設(shè)我們要分析一個視頻中物體的運(yùn)動速度和方向,以下哪種光流估計(jì)算法在復(fù)雜場景下能夠提供更準(zhǔn)確的結(jié)果?()A.Lucas-Kanade算法B.Horn-Schunck算法C.Farneback算法D.DeepFlow算法28、計(jì)算機(jī)視覺在無人駕駛飛行器(UAV)中的應(yīng)用可以輔助飛行和導(dǎo)航。假設(shè)一架UAV需要依靠視覺信息避開障礙物,以下關(guān)于UAV計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠單目視覺就能準(zhǔn)確估計(jì)障礙物的距離和速度B.視覺信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺和深度學(xué)習(xí)算法的結(jié)合可以為UAV提供更準(zhǔn)確的環(huán)境感知和障礙物避讓能力D.UAV的飛行速度和姿態(tài)對視覺系統(tǒng)的性能沒有影響29、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從海量的圖像庫中快速找到與給定圖像相似的圖像。以下關(guān)于圖像特征表示的選擇,哪一項(xiàng)是需要重點(diǎn)考慮的?()A.選擇具有高維度的特征向量,包含豐富的圖像信息B.采用低維度但具有區(qū)分性的特征表示,提高檢索效率C.忽略特征的維度和區(qū)分性,隨機(jī)選擇一種特征表示D.只使用圖像的顏色特征,忽略形狀和紋理等特征30、計(jì)算機(jī)視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關(guān)于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態(tài)的變化B.深度學(xué)習(xí)方法在行人重識別任務(wù)中取得了顯著的性能提升C.行人重識別在智能安防、視頻監(jiān)控和人員追蹤等領(lǐng)域有重要的應(yīng)用D.行人重識別技術(shù)已經(jīng)能夠在大規(guī)模數(shù)據(jù)集上達(dá)到100%的準(zhǔn)確率二、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)利用圖像增強(qiáng)技術(shù),改善霧天交通監(jiān)控圖像的可視性。2、(本題5分)基于深度學(xué)習(xí)的圖像修復(fù)技術(shù),修復(fù)老舊照片中的損壞部分。3、(本題5分)通過計(jì)算機(jī)視覺,對不同類型的根雕作品進(jìn)行分類。4、(本題5分)對舞蹈比賽的評分公正性進(jìn)行基于計(jì)算機(jī)視覺的輔助評估。5、(本題5分)運(yùn)用圖像識別技術(shù),檢測消防器材的有效期。三、簡答題(本大題共5個小題,共25分)1、(本題5分)說明計(jì)算機(jī)視覺在交通擁堵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教師2022年度工作計(jì)劃7篇
- 2024年環(huán)保大數(shù)據(jù)分析與應(yīng)用服務(wù)合同
- 歷史遺址觀后感600字
- 2022教師求職申請書模板5篇
- 《呼嘯山莊》讀后感15篇
- 有關(guān)計(jì)算機(jī)實(shí)習(xí)報告模板匯編八篇
- 開學(xué)典禮講話稿7篇
- 探測制導(dǎo)課程設(shè)計(jì)
- 2021年種植牙行業(yè)深度分析報告
- 高斯貝爾數(shù)碼科技有限公司
- 2024電商消費(fèi)趨勢年度報告-flywheel飛未-202412
- 《農(nóng)機(jī)安全》課件
- 浙江省溫州市2023-2024學(xué)年六年級上學(xué)期期末科學(xué)試卷(含答案)3
- 深圳大學(xué)《激光原理與技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 西安市高新第一中學(xué)八年級上冊地理期末試卷(含答案)
- 駕駛證學(xué)法減分(學(xué)法免分)試題和答案(50題完整版)1650
- 【人民日報】72則金句期末評語模板-每頁4張
- 橋梁加固、拼寬流程圖(共9頁)
- 小組合作學(xué)習(xí)學(xué)生評價量表
- 新錄用公務(wù)員服務(wù)協(xié)議書
- 電氣控制與PLC復(fù)習(xí)課件
評論
0/150
提交評論