




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
LLMAICybersecurity&GovernanceChecklist
FromtheOWASPTop10forLLMApplicationsTeam
Version:1.0
Published:February19,2024
RevisionHistory
Revision
Date
Author(s)
Description
0.1
2023-11-01
SandyDunn
initialdraft
0.5
2023-12-06
SD,Team
publicdraft
0.9
2023-02-15
SD,Team
pre-releasedraft
1.0
2024-02-19
SD,Team
publicreleasev1.0
Theinformationprovidedinthisdocumentdoesnot,andisnotintendedto,constitutelegaladvice.Allinformationisforgeneralinformationalpurposesonly.
Thisdocumentcontainslinkstootherthird-partywebsites.SuchlinksareonlyforconvenienceandOWASPdoesnotrecommendorendorsethecontentsofthethird-partysites.
1
Overview
5
1.1
ResponsibleandTrustworthyArti?cialIntelligence
6
1.2
WhoisThisFor?
7
1.3
WhyaChecklist?
7
1.4
NotComprehensive
7
1.5
LargeLanguageModelChallenges
7
1.6
LLMThreatCategories
8
1.7
Arti?cialIntelligenceSecurityandPrivacyTraining
9
1.8
IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls9
1.9
FundamentalSecurityPrinciples
9
1.10
Risk
10
1.11
VulnerabilityandMitigationTaxonomy
10
2
DeterminingLLMStrategy
11
2.1
DeploymentStrategy
13
3
Checklist
14
3.1
AdversarialRisk
14
3.2
ThreatModeling
14
3.3
AIAssetInventory
14
3.4
AISecurityandPrivacyTraining
15
3.5
EstablishBusinessCases
15
3.6
Governance
16
3.7
Legal
17
3.8
Regulatory
18
3.9
UsingorImplementingLargeLanguageModelSolutions
19
3.10
Testing,Evaluation,Veri?cation,andValidation(TEVV)
19
3.11
ModelCardsandRiskCards
20
3.12
RAG:LargeLanguageModelOptimization
21
3.13
AIRedTeaming
21
4
Resources
22
A
Team
32
Overview
Everyinternetuserandcompanyshouldpreparefortheupcomingwaveofpowerfulgenerativearti?cialintelligence(GenAI)applications.GenAIhasenormouspromiseforinnovation,ef?ciency,andcommercialsuccessacrossavarietyofindustries.Still,likeanypowerfulearlystagetechnology,itbringsitsownsetofobviousandunexpectedchallenges.
Arti?cialintelligencehasadvancedgreatlyoverthelast50years,inconspicuouslysupportingavarietyofcorporateprocessesuntilChatGPT’spublicappearancedrovethedevelopmentanduseofLargeLanguageModels(LLMs)amongbothindividualsandenterprises.Initially,thesetechnologieswerelimitedtoacademicstudyortheexecutionofcertain,butvital,activitieswithincorporations,visibleonlytoaselectfew.However,recentadvancesindataavailability,computerpower,GenAIcapabilities,andthereleaseoftoolssuchasLlama2,ElevenLabs,andMidjourneyhaveraisedAIfromanichetogeneralwidespreadacceptance.TheseimprovementshavenotonlymadeGenAItechnologiesmoreaccessible,buttheyhavealsohighlightedthecriticalneedforenterprisestodevelopsolidstrategiesforintegratingandexploitingAIintheiroperations,representingahugestepforwardinhowweusetechnology.
?Arti?cialintelligence(AI)isabroadtermthatencompassesall?eldsofcomputersciencethatenablemachinestoaccomplishtasksthatwouldnormallyrequirehumanintelligence.MachinelearningandgenerativeAIaretwosubcategoriesofAI.
?MachinelearningisasubsetofAIthatfocusesoncreatingalgorithmsthatcanlearnfromdata.Machinelearningalgorithmsaretrainedonasetofdata,andthentheycanusethatdatatomakepredictionsordecisionsaboutnewdata.
?GenerativeAIisatypeofmachinelearningthatfocusesoncreatingnewdata.
?Alargelanguagemodel(LLM)isatypeofAImodelthatprocessesandgenerateshuman-liketext.Inthecontextofarti?cialintelligencea"model"referstoasystemthatistrainedtomakepredictionsbasedoninputdata.LLMsarespeci?callytrainedonlargedatasetsofnaturallanguageandthenamelargelanguagemodels.
OrganizationsareenteringunchartedterritoryinsecuringandoverseeingGenAIsolutions.TherapidadvancementofGenAIalsoopensdoorsforadversariestoenhancetheirattackstrategies,introducingadualchallengeofdefenseandthreatescalation.
Businessesusearti?cialintelligenceinmanyareas,includingHRforrecruiting,emailspamscreening,SIEMforbehavioralanalytics,andmanageddetectionandresponseapplications.However,thisdocument’sprimaryfocusisonLargeLanguageModelapplicationsandtheirfunctionincreatinggeneratedcontent.
ResponsibleandTrustworthyArti?cialIntelligence
Aschallengesandbene?tsofArti?cialIntelligenceemerge-andregulationsandlawsarepassed-theprinciplesandpillarsofresponsibleandtrustworthyAIusageareevolvingfromidealisticobjectsandconcernstoestablishedstandards.The
OWASPAIExchangeWorkingGroup
ismonitoringthesechangesandaddressingthebroaderandmorechallengingconsiderationsforallaspectsofarti?cialintelligence.
Figure1.1:Imagedepictingthepillarsoftrustworthyarti?cialintelligence
WhoisThisFor?
TheOWASPTop10forLLMApplicationsCybersecurityandGovernanceChecklistisforleadersacrossexecutive,tech,cybersecurity,privacy,compliance,andlegalareas,DevSecOps,MLSecOps,
andCybersecurityteamsanddefenders.Itisintendedforpeoplewhoarestrivingtostayaheadin
thefast-movingAIworld,aimingnotjusttoleverageAIforcorporatesuccessbutalsotoprotectagainsttherisksofhastyorinsecureAIimplementations.Theseleadersandteamsmustcreatetacticstograbopportunities,combatchallenges,andmitigaterisks.
Thischecklistisintendedtohelpthesetechnologyandbusinessleadersquicklyunderstandtherisksandbene?tsofusingLLM,allowingthemtofocusondevelopingacomprehensivelistofcriticalareasandtasksneededtodefendandprotecttheorganizationastheydevelopaLargeLanguageModelstrategy.
ItisthehopeoftheOWASPTop10fortheLLMApplicationsteamthatthislistwillhelporganizationsimprovetheirexistingdefensivetechniquesanddeveloptechniquestoaddressthenewthreatsthatcomefromusingthisexcitingtechnology.
WhyaChecklist?
Checklistsusedtoformulatestrategiesimproveaccuracy,de?neobjectives,preserveuniformity,andpromotefocuseddeliberatework,reducingoversightsandmisseddetails.Followingachecklistnotonlyincreasestrustinasafeadoptionjourney,butalsoencouragesfutureorganizationsinnovationsbyprovidingasimpleandeffectivestrategyforcontinuousimprovement.
NotComprehensive
AlthoughthisdocumentintendstosupportorganizationsindevelopinganinitialLLMstrategyinarapidlychangingtechnical,legal,andregulatoryenvironment,itisnotexhaustiveanddoesnotcovereveryusecaseorobligation.WhileusingthisdocumentisOrganizationsshouldextendassessmentsandpracticesbeyondthescopeoftheprovidedchecklistasrequiredfortheirusecaseorjurisdiction.
LargeLanguageModelChallenges
LargeLanguagemodelsfaceseveralseriousanduniqueissues.OneofthemostimportantisthatwhileworkingwithLLMs,thecontrolanddataplanescannotbestrictlyisolatedorseparable.Anothersigni?cantchallengeisthatLLMsarenondeterministicbydesign,yieldingadifferentoutcomewhenpromptedorrequested.LLMsemploysemanticsearchratherthankeywordsearch.Thekeydistinctionbetweenthetwoisthatthemodel’salgorithmprioritizesthetermsinitsresponse.Thisisasigni?cantdeparturefromhowconsumershavepreviouslyusedtechnology,andithasanimpactontheconsistencyandreliabilityofthe?ndings.Hallucinations,emergingfromthegapsandtraining?awsinthedatathemodelistrainedon,aretheresultofthismethod.
Therearemethodstoimprovereliabilityandreducetheattacksurfaceforjailbreaking,modeltricking,andhallucinations,butthereisatrade-offbetweenrestrictionsandutilityinbothcostandfunctionality.
LLMuseandLLMapplicationsincreaseanorganization’sattacksurface.Somerisksassociated
withLLMsareunique,butmanyarefamiliarissues,suchastheknownsoftwarebillofmaterials(SBoM),supplychain,datalossprotection(DLP),andauthorizedaccess.TherearealsoincreasedrisksnotdirectlyrelatedtoGenAI,butGenAIincreasestheef?ciency,capability,andeffectivenessofattackerswhoattackandthreatenorganizations.
AdversariesareincreasinglyharnessingLLMandGenerativeAItoolstore?neandexpeditetraditional
methodsofattackingorganizations,individuals,andgovernmentsystems.LLMfacilitatestheirabilitytoenhancetechniquesallowingthemtoeffortlesslycraftnewmalware,potentiallyembeddedwithnovelzero-dayvulnerabilitiesordesignedtoevadedetection.Theycanalsogeneratesophisticated,unique,ortailoredphishingschemes.Thecreationofconvincingdeepfakes,whethervideooraudio,furtherpromotestheirsocialengineeringploys.Additionally,thesetoolsenablethemtoexecuteintrusionsanddevelopinnovativehackingcapabilities.Inthefuture,more“tailored”andcompounduseofAItechnologybycriminalactorswilldemandspeci?cresponsesanddedicatedsolutionsfor
anorganization’sappropriatedefenseandresiliencecapabilities.
OrganizationsalsofacethethreatofNOTutilizingthecapabilitiesofLLMssuchasacompetitivedisadvantage,marketperceptionbycustomersandpartnersofbeingoutdated,inabilitytoscalepersonalizedcommunications,innovationstagnation,operationalinef?ciencies,thehigherriskofhumanerrorinprocesses,andinef?cientallocationofhumanresources.
UnderstandingthedifferentkindsofthreatsandintegratingthemwiththebusinessstrategywillhelpweighboththeprosandconsofusingLargeLanguageModels(LLMs)againstnotusingthem,makingsuretheyaccelerateratherthanhinderthebusiness’smeetingbusinessobjectives.
LLMThreatCategories
Figure1.2:ImagedepictingthetypesofAIthreats
Arti?cialIntelligenceSecurityandPrivacyTraining
Employeesthroughoutorganizationsbene?tfromtrainingtounderstandarti?cialintelligence,generativearti?cialintelligence,andthefuturepotentialconsequencesofbuilding,buying,orutilizingLLMs.Trainingforpermissibleuseandsecurityawarenessshouldtargetallemployeesaswellasbemorespecializedforcertainpositionssuchashumanresources,legal,developers,datateams,andsecurityteams.
Fairusepoliciesandhealthyinteractionarekeyaspectsthat,ifincorporatedfromtheverystart,willbeacornerstonetothesuccessoffutureAIcybersecurityawarenesscampaigns.Thiswillnecessarilyprovideuserswithknowledgeofthebasicrulesforinteractionaswellastheabilitytoseparategoodbehaviorfrombadorunethicalbehavior.
IncorporateLLMSecurityandgovernancewithExisting,EstablishedPracticesandControls
WhileAIandgeneratedAIaddanewdimensiontocybersecurity,resilience,privacy,andmeetinglegalandregulatoryrequirements,thebestpracticesthathavebeenaroundforalongtimearestillthebestwaytoidentifyissues,?ndvulnerabilities,?xthem,andmitigatepotentialsecurityissues.
?Con?rmthemanagementofarti?cialintelligencesystemsisintegratedwithexistingorganizationalpractices.
?Con?rmAIMLsystemsfollowexistingprivacy,governance,andsecuritypractices,withAIspeci?cprivacy,governance,andsecuritypracticesimplementedwhenrequired.
FundamentalSecurityPrinciples
LLMcapabilitiesintroduceadifferenttypeofattackandattacksurface.LLMsarevulnerabletocomplexbusinesslogicbugs,suchaspromptinjection,insecureplugindesign,andremotecodeexecution.Existingbestpracticesarethebestwaytosolvetheseissues.Aninternalproductsecurityteamthatunderstandssecuresoftwarereview,architecture,datagovernance,andthird-partyassessmentsThecybersecurityteamshouldalsocheckhowstrongthecurrentcontrolsareto?ndproblemsthatcouldbemadeworsebyLLM,suchasvoicecloning,impersonation,orbypassingcaptchas.Givenrecentadvancementsinmachinelearning,NLP(NaturalLanguageProcessing),NLU(NaturalLanguageUnderstanding),DeepLearning,andmorerecently,LLMs(LargeLanguageModels)andGenerativeAI,itisrecommendedtoincludeprofessionalspro?cientintheseareasalongsidecybersecurityanddevopsteams.Theirexpertisewillnotonlyaidinadoptingthesetechnologiesbutalsoindevelopinginnovativeanalysesandresponsestoemergingchallenges.
Risk
ReferencetoriskusestheISO31000de?nition:Risk="effectofuncertaintyonobjectives."LLMrisksincludedinthechecklistincludesatargetedlistofLLMrisksthataddressadversarial,safety,legal,regulatory,reputation,?nancial,andcompetitiverisks.
VulnerabilityandMitigationTaxonomy
Currentsystemsforclassifyingvulnerabilitiesandsharingthreatinformation,likeOVAL,STIX,CVE,andCWE,arestilldevelopingtheabilitytomonitorandalertdefendersaboutvulnerabilitiesandthreatsspeci?ctoLargeLanguageModels(LLMs)andPredictiveModels.Itisexpectedthatorganizationswillleanontheseestablishedandrecognizedstandards,suchasCVEforvulnerabilityclassi?cationandSTIXfortheexchangeofcyberthreatintelligence(CTI),whenvulnerabilitiesorthreatstoAI/MLsystemsandtheirsupplychainsareidenti?ed.
DeterminingLLMStrategy
TherapidexpansionofLargeLanguageModel(LLM)applicationshasheightenedtheattentionandexaminationofallAI/MLsystemsusedinbusinessoperations,encompassingbothGenerativeAIandlong-establishedPredictiveAI/MLsystems.Thisincreasedfocusexposespotentialrisks,suchasattackerstargetingsystemsthatwerepreviouslyoverlookedandgovernanceorlegalchallengesthatmayhavebeendisregardedintermsoflegal,privacy,liability,orwarrantyissues.ForanyorganizationleveragingAI/MLsystemsinitsoperations,it’scriticaltoassessandestablishcomprehensivepolicies,governance,securityprotocols,privacymeasures,andaccountabilitystandardstoensurethesetechnologiesalignwithbusinessprocessessecurelyandethically.
Attackers,oradversaries,providethemostimmediateandharmfulthreattoenterprises,people,andgovernmentagencies.Theirgoals,whichrangefrom?nancialgaintoespionage,pushthemtostealcriticalinformation,disruptoperations,anddamagecon?dence.Furthermore,theirabilitytoharnessnewtechnologiessuchasAIandmachinelearningincreasesthespeedandsophisticationofattacks,makingitdif?cultfordefensestostayaheadofattacks.
Themostpressingnon-adversaryLLMthreatformanyorganizationsstemfrom"ShadowAI":
employeesusingunapprovedonlineAItools,unsafebrowserplugins,andthird-partyapplicationsthatintroduceLLMfeaturesviaupdatesorupgrades,circumventingstandardsoftwareapprovalprocesses.
Figure2.1:Imageofoptionsfordeploymentstrategy
DeploymentStrategy
Thescopesrangefromleveragingpublicconsumerapplicationstotrainingproprietarymodelsonprivatedata.Factorslikeusecasesensitivity,capabilitiesneeded,andresourcesavailablehelpdeterminetherightbalanceofconveniencevs.control.However,understandingthese?vemodeltypesprovidesaframeworkforevaluatingoptions.
Figure2.2:Imageofoptionsfordeploymenttypes
Checklist
AdversarialRisk
AdversarialRiskincludescompetitorsandattackers.
□Scrutinizehowcompetitorsareinvestinginarti?cialintelligence.AlthoughtherearerisksinAIadoption,therearealsobusinessbene?tsthatmayimpactfuturemarketpositions.
□Investigatetheimpactofcurrentcontrols,suchaspasswordresets,whichusevoicerecognitionwhichmaynolongerprovidetheappropriatedefensivesecurityfromnewGenAIenhancedattacks.
□UpdatetheIncidentResponsePlanandplaybooksforGenAIenhancedattacksandAIMLspeci?cincidents.
ThreatModeling
Threatmodelingishighlyrecommendedtoidentifythreatsandexamineprocessesandsecuritydefenses.Threatmodelingisasetofsystematic,repeatableprocessesthatenablemakingreasonablesecuritydecisionsforapplications,software,andsystems.ThreatmodelingforGenAIacceleratedattacksandbeforedeployingLLMsisthemostcosteffectivewaytoIdentifyandmitigaterisks,protectdata,protectprivacy,andensureasecure,compliantintegrationwithinthebusiness.
□Howwillattackersaccelerateexploitattacksagainsttheorganization,employees,executives,orusers?Organizationsshouldanticipate"hyper-personalized"attacksatscaleusingGenerativeAI.LLM-assistedSpearPhishingattacksarenowexponentiallymoreeffective,targeted,andweaponizedforanattack.
□HowcouldGenAIbeusedforattacksonthebusiness’scustomersorclientsthroughspoo?ngorGenAIgeneratedcontent?
□CanthebusinessdetectandneutralizeharmfulormaliciousinputsorqueriestoLLMsolutions?
□CanthebusinesssafeguardconnectionswithexistingsystemsanddatabaseswithsecureintegrationsatallLLMtrustboundaries?
□Doesthebusinesshaveinsiderthreatmitigationtopreventmisusebyauthorizedusers?
□CanthebusinesspreventunauthorizedaccesstoproprietarymodelsordatatoprotectIntellectualProperty?
□Canthebusinesspreventthegenerationofharmfulorinappropriatecontentwithautomatedcontent?ltering?
AIAssetInventory
AnAIassetinventoryshouldapplytobothinternallydevelopedandexternalorthird-partysolutions.
□CatalogexistingAIservices,tools,andowners.Designateataginassetmanagementforspeci?cinventory.
□IncludeAIcomponentsintheSoftwareBillofMaterial(SBOM),acomprehensivelistofallthesoftwarecomponents,dependencies,andmetadataassociatedwithapplications.
□CatalogAIdatasourcesandthesensitivityofthedata(protected,con?dential,public)
□EstablishifpentestingorredteamingofdeployedAIsolutionsisrequiredtodeterminethecurrentattacksurfacerisk.
□CreateanAIsolutiononboardingprocess.
□EnsureskilledITadminstaffisavailableeitherinternallyorexternally,followingSBoMrequirements.
AISecurityandPrivacyTraining
□ActivelyengagewithemployeestounderstandandaddressconcernswithplannedLLMinitiatives.
□Establishacultureofopen,andtransparentcommunicationontheorganization’suseofpredictiveorgenerativeAIwithintheorganizationprocess,systems,employeemanagementandsupport,andcustomerengagementsandhowitsuseisgoverned,managed,andrisksaddressed.
□Trainallusersonethics,responsibility,andlegalissuessuchaswarranty,license,andcopyright.
□UpdatesecurityawarenesstrainingtoincludeGenAIrelatedthreats.Voicecloningandimage
cloning,aswellasinanticipationofincreasedspearphishingattacks
□AnyadoptedGenAIsolutionsshouldincludetrainingforbothDevOpsandcybersecurityforthedeploymentpipelinetoensureAIsafetyandsecurityassurances.
EstablishBusinessCases
SolidbusinesscasesareessentialtodeterminingthebusinessvalueofanyproposedAIsolution,balancingriskandbene?ts,andevaluatingandtestingreturnoninvestment.Thereareanenormousnumberofpotentialusecases;afewexamplesareprovided.
□Enhancecustomerexperience
□Betteroperationalef?ciency
□Betterknowledgemanagement
□Enhancedinnovation
□MarketResearchandCompetitorAnalysis
□Documentcreation,translation,summarization,andanalysis
Governance
CorporategovernanceinLLMisneededtoprovideorganizationswithtransparencyandaccountability.IdentifyingAIplatformorprocessownerswhoarepotentiallyfamiliarwiththetechnologyorthe
selectedusecasesforthebusinessisnotonlyadvisedbutalsonecessarytoensureadequate
reactionspeedthatpreventscollateraldamagestowellestablishedenterprisedigitalprocesses.
□Establishtheorganization’sAIRACIchart(whoisresponsible,whoisaccountable,whoshouldbeconsulted,andwhoshouldbeinformed)
□DocumentandassignAIrisk,riskassessments,andgovernanceresponsibilitywithintheorganization.
□Establishdatamanagementpolicies,includingtechnicalenforcement,regardingdataclassi?cationandusagelimitations.Modelsshouldonlyleveragedataclassi?edfortheminimumaccesslevelofanyuserofthesystem.Forexample,updatethedataprotectionpolicytoemphasizenottoinputprotectedorcon?dentialdataintononbusiness-managedtools.
□CreateanAIPolicysupportedbyestablishedpolicy(e.g.,standardofgoodconduct,dataprotection,softwareuse)
□PublishanacceptableusematrixforvariousgenerativeAItoolsforemployeestouse.
□DocumentthesourcesandmanagementofanydatathattheorganizationusesfromthegenerativeLLMmodels.
Legal
ManyofthelegalimplicationsofAIareunde?nedandpotentiallyverycostly.AnIT,security,andlegalpartnershipiscriticaltoidentifyinggapsandaddressingobscuredecisions.
□Con?rmproductwarrantiesareclearintheproductdevelopmentstreamtoassignwhoisresponsibleforproductwarrantieswithAI.
□ReviewandupdateexistingtermsandconditionsforanyGenAIconsiderations.
□ReviewAIEULAagreements.End-userlicenseagreementsforGenAIplatformsareverydifferentinhowtheyhandleuserprompts,outputrightsandownership,dataprivacy,compliance,liability,privacy,andlimitsonhowoutputcanbeused.
□OrganizationsEULAforcustomers,Modifyend-useragreementstopreventtheorganizationfromincurringliabilitiesrelatedtoplagiarism,biaspropagation,orintellectualpropertyinfringementthroughAI-generatedcontent.
□ReviewexistingAI-assistedtoolsusedforcodedevelopment.Achatbot’sabilitytowritecodecanthreatenacompany’sownershiprightstoitsproductifachatbotisusedtogeneratecodefortheproduct.Forexample,itcouldcallintoquestionthestatusandprotectionofthegeneratedcontentandwhoholdstherighttousethegeneratedcontent.
□Reviewanyriskstointellectualproperty.Intellectualpropertygeneratedbyachatbotcouldbeinjeopardyifimproperlyobtaineddatawasusedduringthegenerativeprocess,whichissubjecttocopyright,trademark,orpatentprotection.IfAIproductsuseinfringingmaterial,itcreatesariskfortheoutputsoftheAI,whichmayresultinintellectualpropertyinfringement.
□Reviewanycontractswithindemni?cationprovisions.Indemni?cationclausestrytoputtheresponsibilityforaneventthatleadstoliabilityonthepersonwhowasmoreatfaultforitorwhohadthebestchanceofstoppingit.EstablishguardrailstodeterminewhethertheprovideroftheAIoritsusercausedtheevent,givingrisetoliability.
□ReviewliabilityforpotentialinjuryandpropertydamagecausedbyAIsystems.
□Reviewinsurancecoverage.Traditional(D&O)liabilityandcommercialgeneralliabilityinsurancepoliciesarelikelyinsuf?cienttofullyprotectAIuse.
□Identifyanycopyrightissues.Humanauthorshipisrequiredforcopyright.Anorganizationmayalsobeliableforplagiarism,propagationofbias,orintellectualpropertyinfringementifLLMtoolsaremisused.
□EnsureagreementsareinplaceforcontractorsandappropriateuseofAIforanydevelopmentorprovidedservices.
□RestrictorprohibittheuseofgenerativeAItoolsforemployeesorcontractorswhereenforceablerightsmaybeanissueorwherethereareIPinfringementconcerns.
□AssessandAIsolutionsusedforemployeemanagementorhiringcouldresultindisparatetreatmentclaimsordisparateimpactclaims.
□MakesuretheAIsolutionsdonotcollectorsharesensitiveinformationwithoutproperconsentorauthorization.
Regulatory
TheEUAIActisanticipatedtobethe?rstcomprehensiveAIlawbutwillapplyin2025attheearliest.TheEU?GeneralDataProtectionRegulation(GDPR)doesnotspeci?callyaddressAIbutincludesrulesfordatacollection,datasecurity,fairnessandtransparency,accuracyandreliability,andaccountability,whichcanimpactGenAIuse.IntheUnitedStates,AIregulationisincludedwithinbroaderconsumerprivacylaws.TenUSstateshavepassedlawsorhavelawsthatwillgointoeffectbytheendof2023.
FederalorganizationssuchastheUSEqualEmploymentOpportunityCommission(EEOC),theConsumerFinancialProtectionBureau(CFPB),theFederalTradeCommission(FTC),andtheUSDepartmentofJustice?CivilRightsDivision(DOJ)arecloselymonitoringhiringfairness.
□DetermineCountry,State,orotherGovernmentspeci?cAIcompliancerequirements.
□Determinecompliancerequirementsforrestrictingelectronicmonitoringofemployeesandemployment-relatedautomateddecisionsystems(Vermont,California,Maryland,NewYork,NewJersey)
□DeterminecompliancerequirementsforconsentforfacialrecognitionandtheAIvideoanalysisrequired(Illinois,Maryland,Washington,Vermont)
□ReviewanyAItoolsinuseorbeingconsideredforemployeehiringormanagement.
□Con?rmthevendor?compliancewithapplicableAIlawsandbestpractices.
□AskanddocumentanyproductsusingAIduringthehiringprocess.Askhowthemodelwastrained,andhowitismonitored,andtrackanycorrectionsmadetoavoiddiscriminationandbias.
□Askanddocumentwhataccommodationoptionsareincluded.
□Askanddocumentwhetherthevendorcollectscon?dentialdata.
□Askhowthevendorortoolstoresanddeletesdataandregulatestheuseoffacialrecognitionandvideoanalysistoolsduringpre-employment.
□Reviewotherorganization-speci?cregulatoryrequirementswithAIthatmayraisecomplianceissues.TheEmployeeRetirementIncomeSecurityActof1974,forinstance,has?duciarydutyrequirementsforretirementplansthatachatbotmightnotbeabletomeet.
UsingorImplementingLargeLanguageModelSolutions
□ThreatModelLLMcomponentsandarchitecturetrustboundaries.
□DataSecurity,verifyhowdataisclassi?edandprotectedbasedonsensitivity,includingpersonalandproprietarybusinessdata.(Howareuserpermissionsmanaged,andwhatsafeguardsareinplace?)
□AccessControl,implementleastprivilegeaccesscontrolsandimplementdefense-in-depthmeasures
□TrainingPi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司個人租車合同范例
- 公司管理聘請合同范例
- 兒童租賃合同范例
- 3 2023年汽車設(shè)計趨勢分析報告
- 第一單元 我們共同的世界(復(fù)習(xí)教案) 2024-2025學(xué)年統(tǒng)編版道德與法治九年級下冊
- (高清版)DB11∕T1034.2-2024交通噪聲污染緩解工程技術(shù)規(guī)范 第2部分:聲屏障措施
- 2024高考數(shù)學(xué)二輪復(fù)習(xí)分層特訓(xùn)卷客觀題專練解析幾何13文
- 2025年脂肪烴生產(chǎn)工(高級)理論考試題(附答案)
- 虛擬仿真技術(shù)的教學(xué)設(shè)計原則
- 2025年鈑金加工項目發(fā)展計劃
- 第二章VMware Workstation -VMware Workstation的基本使用
- 變頻器說明書大全
- 外科護(hù)理腹外疝病人的護(hù)理課件
- 《新編英漢翻譯教程》課件
- 四川大學(xué)華西醫(yī)院進(jìn)修申請表
- 硬筆書法:幼小銜接識字寫字教學(xué)課件
- 林木育種學(xué):第二講 林木選育技術(shù)基礎(chǔ)課件
- 儀表說明書umc1300用戶手冊
- 三防漆外觀檢驗重點標(biāo)準(zhǔn)
- 2023對口高考電子類基礎(chǔ)課試題卷含答案
- 初中 初一 語文《誰是最可愛的人》 課件
評論
0/150
提交評論