版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆陜西省西安市高新第一中學(xué)高考仿真卷數(shù)學(xué)試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.72.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機(jī)分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.3.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.4.已知函數(shù)是偶函數(shù),當(dāng)時,函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.5.已知函數(shù)在上都存在導(dǎo)函數(shù),對于任意的實數(shù)都有,當(dāng)時,,若,則實數(shù)的取值范圍是()A. B. C. D.6.設(shè)全集,集合,,則()A. B. C. D.7.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.8.已知函數(shù),若方程恰有兩個不同實根,則正數(shù)m的取值范圍為()A. B.C. D.9.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)10.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.11.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:12.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量=(-4,3),=(6,m),且,則m=__________.14.函數(shù)的圖象在處的切線與直線互相垂直,則_____.15.中,角的對邊分別為,且成等差數(shù)列,若,,則的面積為__________.16.設(shè)直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且過點.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設(shè)O為坐標(biāo)原點,試判斷以O(shè)D為直徑的圓與點M的位置關(guān)系.18.(12分)已知函數(shù),其中.(1)當(dāng)時,求在的切線方程;(2)求證:的極大值恒大于0.19.(12分)設(shè)點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.21.(12分)已知函數(shù).當(dāng)時,求不等式的解集;,,求a的取值范圍.22.(10分)在如圖所示的多面體中,平面平面,四邊形是邊長為2的菱形,四邊形為直角梯形,四邊形為平行四邊形,且,,(1)若分別為,的中點,求證:平面;(2)若,與平面所成角的正弦值,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數(shù)量積運算,關(guān)鍵是利用基向量表示所求向量.2、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.3、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.4、A【解析】
根據(jù)圖象關(guān)于軸對稱可知關(guān)于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【詳解】為偶函數(shù)圖象關(guān)于軸對稱圖象關(guān)于對稱時,單調(diào)遞減時,單調(diào)遞增又且,即本題正確選項:【點睛】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.5、B【解析】
先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當(dāng)時,,又,所以為偶函數(shù),從而等價于,因此選B.【點睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.6、D【解析】
求解不等式,得到集合A,B,利用交集、補(bǔ)集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補(bǔ)集混合運算,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于中檔題.7、C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.8、D【解析】
當(dāng)時,函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個不同實根,即函數(shù)和有圖像兩個交點,計算,,根據(jù)圖像得到答案.【詳解】當(dāng)時,,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個交點.,,故,,,,.根據(jù)圖像知:.故選:.【點睛】本題考查了函數(shù)的零點問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.9、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.10、C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.11、C【解析】
根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.12、C【解析】
設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問題的突破口.二、填空題:本題共4小題,每小題5分,共20分。13、8.【解析】
利用轉(zhuǎn)化得到加以計算,得到.【詳解】向量則.【點睛】本題考查平面向量的坐標(biāo)運算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.14、1.【解析】
求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進(jìn)行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:【點睛】本題主要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.15、.【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.16、【解析】
不妨設(shè)雙曲線,焦點,令,由的長為實軸的二倍能夠推導(dǎo)出的離心率.【詳解】不妨設(shè)雙曲線,焦點,對稱軸,由題設(shè)知,因為的長為實軸的二倍,,,,故答案為.【點睛】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應(yīng)先將用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)點在以為直徑的圓上【解析】
(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點,,則,,求出直線的方程,進(jìn)而求出點的坐標(biāo),再利用中點坐標(biāo)公式得到點的坐標(biāo),下面結(jié)合點在橢圓上證出,所以點在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點,,則,,直線的斜率為,直線的方程為:,令得,,點的坐標(biāo)為,,點的坐標(biāo)為,,,,又點,在橢圓上,,,,點在以為直徑的圓上.【點睛】本題主要考查了橢圓方程,考查了中點坐標(biāo)公式,以及平面向量的基本知識,屬于中檔題.18、(1)(2)證明見解析【解析】
(1)求導(dǎo),代入,求出在處的導(dǎo)數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當(dāng)時,,,則在的切線方程為;(2)證明:令,解得或,①當(dāng)時,恒成立,此時函數(shù)在上單調(diào)遞減,∴函數(shù)無極值;②當(dāng)時,令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴;③當(dāng)時,令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴,綜上,函數(shù)的極大值恒大于0.【點睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.19、(1)(2)見解析【解析】
(1)設(shè),求出后由二次函數(shù)知識得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達(dá)定理得,設(shè),利用三點共線,求得,然后驗證即可.【詳解】解:(1)設(shè),則,所以,因為.所以當(dāng)時,值最小,所以,解得,(舍負(fù))所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因為三點共線,又所以,解得.而所以直線軸,即.【點睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應(yīng)用韋達(dá)定理,得出,再代入題中需要計算可證明的式子參與化簡變形.20、(Ⅰ)6(Ⅱ)【解析】
(Ⅰ)化簡得到直線的普通方程化為,,是以點為圓心,為半徑的圓,利用垂徑定理計算得到答案.(Ⅱ)設(shè),則,得到范圍.【詳解】(Ⅰ)由題意可知,直線的普通方程化為,曲線的極坐標(biāo)方程變形為,所以的普通方程分別為,是以點為圓心,為半徑的圓,設(shè)點到直線的距離為,則,所以.(Ⅱ)的標(biāo)準(zhǔn)方程為,所以參數(shù)方程為(為參數(shù)),設(shè),,因為,所以,所以.【點睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計算能力和應(yīng)用能力.21、(1);(2).【解析】
(1)當(dāng)時,,①當(dāng)時,,令,即,解得,②當(dāng)時,,顯然成立,所以,③當(dāng)時,,令,即,解得,綜上所述,不等式的解集為.(2)因為,因為,有成立,所以只需,解得,所以a的取值范圍為.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.22、(1)見解析(2)【解析】試題分析:(1)第(1)問,轉(zhuǎn)化成證明平面,再轉(zhuǎn)化成證明和.(2)第(2)問,先利用幾何法找到與平面所成角,再根據(jù)與平面所成角的正弦值為求出再建立空間直角坐標(biāo)系,求出二面角的余弦值.試題解析:(1)連接,因為四邊形為菱形,所以.因為平面平面,平面平面,平面,,所以平面.又平面,所以.因為,所以.因為,所以平面.因為分別為,的中點,所以,所以平面(2)設(shè),由(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)保產(chǎn)品購銷合同標(biāo)準(zhǔn)文本一
- 2024-2030年中國奶茶粉行業(yè)市場銷售渠道及未來趨勢發(fā)展分析報告
- 2024-2030年中國大數(shù)據(jù)金融行業(yè)發(fā)展創(chuàng)新模式及投資規(guī)劃分析報告
- 2024-2030年中國垃圾轉(zhuǎn)運車行業(yè)競爭格局展望及投資策略分析報告
- 2024-2030年中國印刷機(jī)械制造行業(yè)產(chǎn)銷需求及投資策略分析報告
- 2024年版給排水系統(tǒng)安裝作業(yè)勞務(wù)合作合同版B版
- 2024年智能穿戴設(shè)備設(shè)計優(yōu)化與功能升級合同3篇
- 2024年物資購銷合同范例
- 眉山藥科職業(yè)學(xué)院《首飾材料與首飾設(shè)計實踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024勞動資源開發(fā)合同3篇
- 微生物學(xué)(細(xì)胞型)智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱師范大學(xué)
- 行政復(fù)議法-形考作業(yè)4-國開(ZJ)-參考資料
- 內(nèi)分泌科開展新技術(shù)新項目
- 學(xué)前衛(wèi)生學(xué)智慧樹知到期末考試答案章節(jié)答案2024年杭州師范大學(xué)
- 應(yīng)急管理部宣傳教育中心招聘筆試試卷2021
- 2024-2030年全球智能垃圾桶行業(yè)市場發(fā)展分析及前景趨勢與投資研究報告
- MOOC 管理學(xué)原理-大連理工大學(xué) 中國大學(xué)慕課答案
- MOOC 工程圖學(xué)-天津大學(xué) 中國大學(xué)慕課答案
- 《電站爐水循環(huán)泵電機(jī)運行導(dǎo)則》
- 《小學(xué)小古文》課件
- (高清版)DZT 0388-2021 礦區(qū)地下水監(jiān)測規(guī)范
評論
0/150
提交評論