版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
銅仁市重點中學(xué)2025屆高考全國統(tǒng)考預(yù)測密卷數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,2.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.3.函數(shù)的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.4.已知拋物線的焦點為,若拋物線上的點關(guān)于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.5.等比數(shù)列的前項和為,若,,,,則()A. B. C. D.6.向量,,且,則()A. B. C. D.7.正三棱錐底面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.8.設(shè)拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.9.本次模擬考試結(jié)束后,班級要排一張語文、數(shù)學(xué)、英語、物理、化學(xué)、生物六科試卷講評順序表,若化學(xué)排在生物前面,數(shù)學(xué)與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種10.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.11.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.512.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.8二、填空題:本題共4小題,每小題5分,共20分。13.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.14.在各項均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.15.的展開式中的常數(shù)項為_______.16.設(shè)滿足約束條件且的最小值為7,則=_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點的極坐標(biāo)為.(1)求的直角坐標(biāo)方程和的直角坐標(biāo);(2)設(shè)與交于,兩點,線段的中點為,求.18.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關(guān)于的方程的兩根分別為,求證:.19.(12分)已知函數(shù).(1)若在處導(dǎo)數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數(shù)的取值范圍.20.(12分)已知橢圓的右焦點為,過點且斜率為的直線與橢圓交于兩點,線段的中點為為坐標(biāo)原點.(1)證明:點在軸的右側(cè);(2)設(shè)線段的垂直平分線與軸、軸分別相交于點.若與的面積相等,求直線的斜率21.(12分)在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點,中點為,的垂直平分線交于、.以為坐標(biāo)原點,極軸為軸的正半軸建立直角坐標(biāo)系.(1)求的直角坐標(biāo)方程與點的直角坐標(biāo);(2)求證:.22.(10分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點.(2)若函數(shù)在區(qū)間上不單調(diào),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.2、D【解析】
設(shè)等比數(shù)列的公比為q,,運(yùn)用等比數(shù)列的性質(zhì)和通項公式,以及等差數(shù)列的中項性質(zhì),解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質(zhì)和等比數(shù)列的通項公式的應(yīng)用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運(yùn)算能力,屬于基礎(chǔ)題.3、A【解析】
求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.4、B【解析】
由焦點得拋物線方程,設(shè)點的坐標(biāo)為,根據(jù)對稱可求出點的坐標(biāo),寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設(shè)點的坐標(biāo)為,點的坐標(biāo)為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設(shè)直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),點關(guān)于直線對稱,屬于中檔題.5、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數(shù)列.6、D【解析】
根據(jù)向量平行的坐標(biāo)運(yùn)算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.7、D【解析】
由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.8、B【解析】
由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標(biāo),代入拋物線方程求出參數(shù),可得點坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設(shè)為,如圖,由于,,∴,∴,,∴點坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.9、B【解析】
利用分步計數(shù)原理結(jié)合排列求解即可【詳解】第一步排語文,英語,化學(xué),生物4種,且化學(xué)排在生物前面,有種排法;第二步將數(shù)學(xué)和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應(yīng)用,不相鄰采用插空法求解,準(zhǔn)確分步是關(guān)鍵,是基礎(chǔ)題10、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.11、C【解析】
由,再運(yùn)用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.12、A【解析】
先將除A,B以外的兩人先排,再將A,B在3個空位置里進(jìn)行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進(jìn)行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
△PMF的周長最小,即求最小,過做拋物線準(zhǔn)線的垂線,垂足為,轉(zhuǎn)化為求最小,數(shù)形結(jié)合即可求解.【詳解】如圖,F(xiàn)為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準(zhǔn)線方程為y=﹣2.過作準(zhǔn)線的垂線,垂足為,則有,當(dāng)且僅當(dāng)三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應(yīng)用,考查數(shù)形結(jié)合與數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.14、【解析】
利用等差中項的性質(zhì)和等比數(shù)列通項公式得到關(guān)于的方程,解方程求出代入等比數(shù)列通項公式即可.【詳解】因為,成等差數(shù)列,所以,由等比數(shù)列通項公式得,,所以,解得或,因為,所以,所以等比數(shù)列的通項公式為.故答案為:【點睛】本題考查等差中項的性質(zhì)和等比數(shù)列通項公式;考查運(yùn)算求解能力和知識綜合運(yùn)用能力;熟練掌握等差中項和等比數(shù)列通項公式是求解本題的關(guān)鍵;屬于中檔題.15、【解析】
寫出展開式的通項公式,考慮當(dāng)?shù)闹笖?shù)為零時,對應(yīng)的值即為常數(shù)項.【詳解】的展開式通項公式為:,令,所以,所以常數(shù)項為.
故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,難度較易.解答問題的關(guān)鍵是,能通過展開式通項公式分析常數(shù)項對應(yīng)的取值.16、3【解析】
根據(jù)約束條件畫出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對參數(shù)a分類討論,當(dāng)時顯然不滿足題意;當(dāng)時,直線經(jīng)過可行域中的點A時,截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時,的截距沒有最小值,即z沒有最小值;當(dāng)時,的截距沒有最大值,即z沒有最小值,綜上可得出結(jié)果.【詳解】根據(jù)約束條件畫出可行域如下:由,可得出交點,由可得,當(dāng)時顯然不滿足題意;當(dāng)即時,由可行域可知當(dāng)直線經(jīng)過可行域中的點A時,截距最小,即z有最小值,即,解得或(舍);當(dāng)即時,由可行域可知的截距沒有最小值,即z沒有最小值;當(dāng)即時,根據(jù)可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時.故答案為:3.【點睛】本題主要考查線性規(guī)劃問題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對參數(shù)進(jìn)行討論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】
(1)利用互化公式把曲線C化成直角坐標(biāo)方程,把點P的極坐標(biāo)化成直角坐標(biāo);(2)把直線l的參數(shù)方程的標(biāo)準(zhǔn)形式代入曲線C的直角坐標(biāo)方程,根據(jù)韋達(dá)定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標(biāo)方程為y2=1,設(shè)點P的直角坐標(biāo)為(x,y),因為P的極坐標(biāo)為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點P的直角坐標(biāo)為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因為△=1102﹣4×41×25=8000>0,故可設(shè)方程的兩根為t1,t2,則t1,t2為A,B對應(yīng)的參數(shù),且t1+t2,依題意,點M對應(yīng)的參數(shù)為,所以|PM|=||.【點睛】本題考查了簡單曲線的極坐標(biāo)方程,屬中檔題.18、(1)見解析;(2)見解析【解析】
(1)對函數(shù)求導(dǎo),對參數(shù)討論,得函數(shù)單調(diào)區(qū)間,進(jìn)而求出極值;(2)是方程的兩根,代入方程,化簡換元,構(gòu)造新函數(shù)利用函數(shù)單調(diào)性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調(diào)遞增,此時函數(shù)既無極大值,也無極小值;若,則,令,解得,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,此時函數(shù)有極大值,無極小值;若,則,令,解得,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,此時函數(shù)有極大值,無極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設(shè),只需證:,設(shè),則,故在上單調(diào)遞增,故,即,故.【點睛】本題考查函數(shù)極值及利用導(dǎo)數(shù)證明二元不等式.證明二元不等式常用方法是轉(zhuǎn)化為證明一元不等式,再轉(zhuǎn)化為函數(shù)最值問題.利用導(dǎo)數(shù)證明不等式的基本方法:(1)若與的最值易求出,可直接轉(zhuǎn)化為證明;(2)若與的最值不易求出,可構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性或最值,證明.19、(I)見解析(II)【解析】
(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導(dǎo)數(shù)相等,得到,得,由韋達(dá)定理得,由基本不等式得,得,由題意得,令,則,令,,利用導(dǎo)數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達(dá)定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當(dāng)自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數(shù),得,令,則,得【點睛】本題考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算及其應(yīng)用,同時考查邏輯思維能力和綜合應(yīng)用能力屬難題.20、(1)證明見解析(2)【解析】
(1)設(shè)出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出點的橫坐標(biāo)即可證出;(2)根據(jù)線段的垂直平分線求出點的坐標(biāo),即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設(shè),,聯(lián)立消去,得,顯然,,則點的橫坐標(biāo),因為,所以點在軸的右側(cè).(2)由(1)得點的縱坐標(biāo).即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因為與的面積相等,所以,解得.所以當(dāng)與的面積相等時,直線的斜率.【點睛】本題主要考查直線與橢圓的位置關(guān)系的應(yīng)用、根與系數(shù)的關(guān)系應(yīng)用,以及三角形的面積的計算,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于中檔題.21、(1),;(2)見解析.【解析】
(1)將曲線的極坐標(biāo)方程變形為,再由可將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的方程與曲線的方程聯(lián)立,求出點、的坐標(biāo),即可得出線段的中點的坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 師德師風(fēng)警示教育活動總結(jié)6篇
- 工程信息管理體系
- 國開《可編程控制器應(yīng)用》形考任務(wù)五實驗1
- 2024年淮南聯(lián)合大學(xué)高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 2022年6月7日陜西省省直事業(yè)單位廣播電視局面試真題及答案
- 中國人民大學(xué)會計系列教材·第四版《成本會計學(xué)》課件-第六章
- 濕紙巾發(fā)展趨勢分析報告
- 2024年隴西縣第一人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 如何提起證券交易代理合同糾紛訴訟培訓(xùn)講學(xué)
- 2024年泰山護(hù)理職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試歷年參考題庫含答案解析
- 《常見包材工藝簡介》課件
- 運(yùn)輸管理與鐵路運(yùn)輸
- 寧德時代社招測評題庫
- 統(tǒng)編版六年級語文上冊專項 專題11文言文閱讀-原卷版+解析
- 高中數(shù)學(xué)筆記總結(jié)高一至高三很全
- 011(1)-《社會保險人員減員申報表》
- 電廠C級檢修工藝流程
- 函授本科《小學(xué)教育》畢業(yè)論文范文
- 高考高中英語單詞詞根詞綴大全
- 藥用輔料聚乙二醇400特性、用法用量
- 《中小學(xué)機(jī)器人教育研究(論文)11000字》
評論
0/150
提交評論