蘭州外語職業(yè)學(xué)院《模式識別》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
蘭州外語職業(yè)學(xué)院《模式識別》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
蘭州外語職業(yè)學(xué)院《模式識別》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
蘭州外語職業(yè)學(xué)院《模式識別》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
蘭州外語職業(yè)學(xué)院《模式識別》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁蘭州外語職業(yè)學(xué)院《模式識別》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的應(yīng)用中,智能推薦系統(tǒng)越來越普及。假設(shè)一個電商平臺要為用戶提供個性化的商品推薦,需要綜合考慮用戶的歷史購買行為、瀏覽記錄和商品的屬性等多方面信息。以下哪種算法或模型在處理這種多源異構(gòu)數(shù)據(jù)的推薦任務(wù)上表現(xiàn)更為出色?()A.協(xié)同過濾算法B.基于內(nèi)容的推薦算法C.混合推薦算法D.關(guān)聯(lián)規(guī)則挖掘2、人工智能中的異常檢測技術(shù)在許多領(lǐng)域都有需求,如網(wǎng)絡(luò)安全、工業(yè)監(jiān)控等。假設(shè)要在一個大型網(wǎng)絡(luò)中檢測異常的流量模式,需要能夠快速發(fā)現(xiàn)潛在的威脅。以下哪種異常檢測方法在處理高維、動態(tài)的數(shù)據(jù)時表現(xiàn)更為出色?()A.基于統(tǒng)計的方法B.基于聚類的方法C.基于深度學(xué)習(xí)的方法D.以上方法結(jié)合使用3、在人工智能的計算機視覺任務(wù)中,目標跟蹤是一個具有挑戰(zhàn)性的問題。假設(shè)我們要跟蹤一個在人群中移動的人物,以下關(guān)于目標跟蹤的方法,哪一項是不準確的?()A.基于特征匹配的方法B.基于深度學(xué)習(xí)的方法C.基于粒子濾波的方法D.目標跟蹤不需要考慮光照和遮擋的影響4、人工智能在金融風(fēng)險預(yù)測中具有應(yīng)用潛力。假設(shè)要預(yù)測股票市場的波動,以下哪種數(shù)據(jù)來源可能對預(yù)測結(jié)果的準確性提升幫助最???()A.公司的財務(wù)報表B.社交媒體上的輿論C.歷史天氣數(shù)據(jù)D.宏觀經(jīng)濟指標5、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本和音頻。假設(shè)要開發(fā)一個能夠同時理解圖像和文本內(nèi)容的系統(tǒng),以下哪個挑戰(zhàn)是最突出的?()A.數(shù)據(jù)的標注和對齊B.模型的訓(xùn)練效率C.不同模態(tài)數(shù)據(jù)的特征提取D.模型的可擴展性6、人工智能中的計算機視覺技術(shù)能夠讓計算機理解和分析圖像和視頻內(nèi)容。以下關(guān)于計算機視覺的描述,不準確的是()A.目標檢測、圖像分類和語義分割是計算機視覺中的常見任務(wù)B.計算機視覺技術(shù)可以應(yīng)用于自動駕駛、安防監(jiān)控和工業(yè)檢測等領(lǐng)域C.計算機視覺系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動了計算機視覺技術(shù)的發(fā)展7、在人工智能的發(fā)展過程中,倫理原則的制定至關(guān)重要。假設(shè)要制定人工智能倫理原則,以下關(guān)于其制定的描述,哪一項是不正確的?()A.應(yīng)考慮公平、公正、透明、可解釋等原則,保障公眾利益B.倫理原則應(yīng)隨著技術(shù)的發(fā)展和應(yīng)用不斷更新和完善C.制定倫理原則只需考慮技術(shù)層面的問題,無需考慮社會和文化因素D.廣泛征求各界意見,確保倫理原則的合理性和可行性8、人工智能在智能交通系統(tǒng)中的應(yīng)用包括交通流量預(yù)測和智能信號燈控制等。假設(shè)要優(yōu)化一個城市的交通信號燈系統(tǒng),以下關(guān)于智能交通中的人工智能應(yīng)用的描述,正確的是:()A.僅依靠歷史交通數(shù)據(jù)就能實現(xiàn)最優(yōu)的信號燈控制策略,無需考慮實時交通狀況B.人工智能算法在交通流量預(yù)測中總是能夠準確預(yù)測未來的交通狀況,不受突發(fā)情況的影響C.結(jié)合實時交通數(shù)據(jù)、傳感器信息和深度學(xué)習(xí)算法,可以動態(tài)優(yōu)化交通信號燈控制,提高交通效率D.智能交通系統(tǒng)中的人工智能應(yīng)用會導(dǎo)致交通管理的復(fù)雜性增加,不如傳統(tǒng)方法可靠9、在人工智能的模型部署階段,需要考慮許多實際問題。假設(shè)要將一個訓(xùn)練好的人工智能模型部署到移動設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的方法,哪一項是不正確的?()A.采用量化技術(shù),減少模型的參數(shù)精度B.進行模型剪枝,去除不重要的連接和神經(jīng)元C.直接將訓(xùn)練好的模型原封不動地部署到移動設(shè)備上,不進行任何優(yōu)化D.使用知識蒸餾技術(shù),將復(fù)雜模型的知識遷移到較小的模型中10、在人工智能的自動駕駛道德決策中,假設(shè)車輛面臨一個不可避免的碰撞場景,需要在保護車內(nèi)乘客和避免傷害行人之間做出選擇。以下哪種決策原則在倫理上更被接受?()A.優(yōu)先保護車內(nèi)乘客的生命安全B.隨機選擇保護對象C.基于最大多數(shù)人的利益進行決策D.這是一個無法確定的道德困境,沒有明確的決策原則11、在人工智能的智能客服應(yīng)用中,需要快速準確地回答用戶的問題。假設(shè)用戶的問題類型多樣,包括咨詢、投訴、技術(shù)問題等。為了提高智能客服的回答質(zhì)量和效率,以下哪種技術(shù)或策略是重要的?()A.建立大規(guī)模的問題庫和標準答案B.運用自然語言生成技術(shù)生成回答C.引導(dǎo)用戶提出更簡單的問題D.對復(fù)雜問題直接拒絕回答12、人工智能在語音識別領(lǐng)域取得了重大進展。假設(shè)要開發(fā)一個能夠?qū)崟r將語音轉(zhuǎn)換為文字的系統(tǒng),以下關(guān)于語音識別的描述,哪一項是不正確的?()A.聲學(xué)模型用于分析語音的聲學(xué)特征,語言模型用于理解語言的語法和語義B.深度神經(jīng)網(wǎng)絡(luò)在語音識別中能夠提高識別準確率和魯棒性C.語音識別系統(tǒng)在各種環(huán)境和口音條件下都能達到100%的準確率D.對大量不同口音和背景噪音的語音數(shù)據(jù)進行訓(xùn)練,可以提升系統(tǒng)的適應(yīng)性13、人工智能中的遷移學(xué)習(xí)可以將在一個任務(wù)上學(xué)習(xí)到的知識應(yīng)用到其他相關(guān)任務(wù)中。假設(shè)已經(jīng)有一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型,要將其應(yīng)用于醫(yī)學(xué)圖像分析,以下哪個因素可能會限制遷移學(xué)習(xí)的效果?()A.數(shù)據(jù)分布的差異B.模型的復(fù)雜度C.計算資源的限制D.任務(wù)的相似性14、在人工智能的語音合成領(lǐng)域,假設(shè)要生成自然流暢、富有情感的語音,以下關(guān)于語音合成技術(shù)的描述,正確的是:()A.參數(shù)合成方法能夠靈活控制語音的特征,但音質(zhì)相對較差B.拼接合成方法生成的語音自然度高,但需要大量的語音庫支持C.深度學(xué)習(xí)的語音合成模型可以同時實現(xiàn)高質(zhì)量和高自然度的語音生成D.語音合成的情感表達只能通過調(diào)整語音的音調(diào)來實現(xiàn)15、自動駕駛是人工智能的一個具有挑戰(zhàn)性的應(yīng)用領(lǐng)域。以下關(guān)于自動駕駛的描述,不正確的是()A.自動駕駛分為不同的級別,從輔助駕駛到完全自動駕駛B.自動駕駛需要依靠傳感器、計算機視覺和決策算法等技術(shù)的協(xié)同工作C.目前的自動駕駛技術(shù)已經(jīng)非常成熟,可以在任何路況下安全可靠地運行D.自動駕駛面臨著法律、道德和技術(shù)等多方面的挑戰(zhàn)和問題二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋遺傳算法的原理和應(yīng)用。2、(本題5分)簡述人工智能在生產(chǎn)計劃和調(diào)度中的優(yōu)化。3、(本題5分)談?wù)勅斯ぶ悄茉谥悄芄?yīng)鏈風(fēng)險管理中的應(yīng)用。三、操作題(本大題共5個小題,共25分)1、(本題5分)基于Python的OpenCV庫和深度學(xué)習(xí)框架,實現(xiàn)一個實時的交通信號燈識別系統(tǒng)。能夠在車輛行駛過程中準確識別出前方交通信號燈的狀態(tài),并給出相應(yīng)的提示。2、(本題5分)在PyTorch中,構(gòu)建一個基于圖神經(jīng)網(wǎng)絡(luò)(GNN)的模型,對社交網(wǎng)絡(luò)中的關(guān)系進行預(yù)測。研究不同的圖結(jié)構(gòu)和節(jié)點特征對預(yù)測結(jié)果的影響。3、(本題5分)運用Python的TensorFlow框架,構(gòu)建一個基于變分自編碼器(VAE)的異常檢測模型,用于檢測工業(yè)設(shè)備的故障。4、(本題5分)借助TensorFlow實現(xiàn)一個語音合成模型,將輸入的文本轉(zhuǎn)換為自然流暢的語音。調(diào)整語音的音色、語速等參數(shù)。5、(本題5分)在PyTorch中,構(gòu)建一個基于圖注意力網(wǎng)絡(luò)(GAT)的模型,對知識圖譜中的關(guān)系進行推理。評估推理的準確性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論