版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省泰安市新泰市第二中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)P是C的右支上一點(diǎn),連接與y軸交于點(diǎn)M,若(O為坐標(biāo)原點(diǎn)),,則雙曲線C的漸近線方程為()A. B. C. D.2.復(fù)數(shù)().A. B. C. D.3.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.4 B.8 C.16 D.24.若的展開式中的系數(shù)為-45,則實(shí)數(shù)的值為()A. B.2 C. D.5.已知角的終邊經(jīng)過點(diǎn)P(),則sin()=A. B. C. D.6.已知數(shù)列的通項(xiàng)公式為,將這個(gè)數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個(gè)數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.7.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個(gè)問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.19.若為純虛數(shù),則z=()A. B.6i C. D.2010.設(shè)橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),直線BF交直線AC于M,且M為AC的中點(diǎn),則橢圓E的離心率是()A. B. C. D.11.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-312.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為__.14.已知是拋物線的焦點(diǎn),過作直線與相交于兩點(diǎn),且在第一象限,若,則直線的斜率是_________.15.已知,在方向上的投影為,則與的夾角為_________.16.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足:,,且對(duì)任意的都有,(Ⅰ)證明:對(duì)任意,都有;(Ⅱ)證明:對(duì)任意,都有;(Ⅲ)證明:.18.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點(diǎn)B落在矩形的邊上,記該點(diǎn)為E,且折痕的兩端點(diǎn)M,N分別在邊上.設(shè),的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時(shí)的值;(3)問當(dāng)θ為何值時(shí),的面積S取得最小值?并求出這個(gè)最小值.19.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.20.(12分)設(shè)的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.21.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實(shí)數(shù)t的值.22.(10分)已知函數(shù).(1)當(dāng)時(shí),試求曲線在點(diǎn)處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程?!驹斀狻吭O(shè),,由,與相似,所以,即,又因?yàn)?,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點(diǎn)睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力。2、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.3、A【解析】
利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計(jì)算,難度容易.4、D【解析】
將多項(xiàng)式的乘法式展開,結(jié)合二項(xiàng)式定理展開式通項(xiàng),即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式通項(xiàng)的簡單應(yīng)用,指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.5、A【解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項(xiàng).6、D【解析】
由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點(diǎn)睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.8、B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實(shí)際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)椋獾?,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問題很有幫助.9、C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.10、C【解析】
連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點(diǎn)為的中位線,,且,,解得橢圓的離心率.故選:C【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì),考查了運(yùn)算求解能力,屬于基礎(chǔ)題.11、B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.12、D【解析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對(duì)函數(shù)求導(dǎo)后,代入切點(diǎn)的橫坐標(biāo)得到切線斜率,然后根據(jù)直線方程的點(diǎn)斜式,即可寫出切線方程.【詳解】因?yàn)?,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查過曲線上一點(diǎn)的切線方程的求法,屬基礎(chǔ)題.14、【解析】
作出準(zhǔn)線,過作準(zhǔn)線的垂線,利用拋物線的定義把拋物線點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,利用平面幾何知識(shí)計(jì)算出直線的斜率.【詳解】設(shè)是準(zhǔn)線,過作于,過作于,過作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點(diǎn)睛】本題考查拋物線的焦點(diǎn)弦問題,解題關(guān)鍵是利用拋物線的定義,把拋物線上點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為該點(diǎn)到準(zhǔn)線的距離,用平面幾何方法求解.15、【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大?。驹斀狻吭诜较蛏系耐队盀椋磰A角為.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握向量投影的定義是解題關(guān)鍵.16、【解析】
直接計(jì)算得到答案,根據(jù)題意得到,,解得答案.【詳解】,故,當(dāng)時(shí),,故,解得.故答案為:;.【點(diǎn)睛】本題考查了三角函數(shù)的周期和單調(diào)性,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應(yīng)用題中所給的條件,有效利用,再者就是注意應(yīng)用反證法證題的步驟;(2)將式子進(jìn)行相應(yīng)的代換,結(jié)合不等式的性質(zhì)證得結(jié)果;(3)結(jié)合題中的條件,應(yīng)用反證法求得結(jié)果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對(duì)任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對(duì)任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時(shí),有,與矛盾.則.得證.點(diǎn)睛:該題考查的是有關(guān)命題的證明問題,在證題的過程中,注意對(duì)題中的條件的等價(jià)轉(zhuǎn)化,注意對(duì)式子的等價(jià)變形,以及證題的思路,要掌握證明問題的方法,尤其是反證法的證題思路以及證明步驟.18、(1)(2),的最小值為.(3)時(shí),面積取最小值為【解析】
(1),利用三角函數(shù)定義分別表示,且,即可得到關(guān)于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設(shè)為,令,則,即可設(shè),利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,即可求得的最大值,進(jìn)而求解;(3)由題,,則,設(shè),,利用導(dǎo)函數(shù)求得的最大值,即可求得的最小值.【詳解】解:(1),故.因?yàn)?所以,,所以,又,,則,所以,所以(2)記,則,設(shè),,則,記,則,令,則,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng)時(shí)取最小值,此時(shí),的最小值為.(3)的面積,所以,設(shè),則,設(shè),則,令,,所以當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng),即時(shí),面積取最小值為【點(diǎn)睛】本題考查三角函數(shù)定義的應(yīng)用,考查利用導(dǎo)函數(shù)求最值,考查運(yùn)算能力.19、(1)(2)【解析】
(1)利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)求出公差,從而求出,再利用等比數(shù)列的前項(xiàng)和公式即可求解.(2)由(1)求出,再利用裂項(xiàng)求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點(diǎn)睛】本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式、等比數(shù)列的前項(xiàng)和公式、裂項(xiàng)求和法,需熟記公式,屬于基礎(chǔ)題.20、(1)(2)【解析】
(1)利用正弦定理化簡已知條件,由此求得的值,進(jìn)而求得的大小.(2)利用正弦定理和兩角差的正弦公式,求得的表達(dá)式,進(jìn)而求得的取值范圍.【詳解】(1)由題設(shè)知,,即,所以,即,又所以.(2)由題設(shè)知,,即,又為銳角三角形,所以,即所以,即,所以的取值范圍是.【點(diǎn)睛】本小題主要考查利用正弦定理解三角形,考查利用角的范圍,求邊的比值的取值范圍,屬于中檔題.21、t=1【解析】
把變形為結(jié)合基本不等式進(jìn)行求解.【詳解】因?yàn)榧矗?dāng)且僅當(dāng),,時(shí),上述等號(hào)成立,所以,即,又x,y,z>0,所以xyzt=1.【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時(shí)要注意轉(zhuǎn)化為適用形式,同時(shí)要關(guān)注不等號(hào)是否成立,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).22、(1);(2)見解析【解析】
(1)對(duì)函數(shù)進(jìn)行求導(dǎo),可以求出曲線在點(diǎn)處的切線,利用直線的斜截式方程可以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年智能硬件設(shè)備及配套軟件研發(fā)與銷售合同
- 2024年版道路運(yùn)輸司機(jī)合同2篇
- 2021-2022學(xué)年甘肅省白銀市部分學(xué)校高一上學(xué)期第二次聯(lián)考語文試題(解析版)
- 2025造價(jià)工程師經(jīng)驗(yàn)對(duì)建設(shè)工程合同的審查意義備考資料
- 2025年陽泉貨運(yùn)準(zhǔn)駕證模擬考試
- 2024年房地產(chǎn)項(xiàng)目施工監(jiān)理合同范本集錦3篇
- 2024年度高級(jí)實(shí)習(xí)生個(gè)人隱私及商業(yè)秘密保護(hù)協(xié)議3篇
- 洛陽科技職業(yè)學(xué)院《經(jīng)濟(jì)數(shù)學(xué)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 高端制造企業(yè)總經(jīng)理聘任合同
- 2024年度船舶買賣居間代理合同實(shí)施細(xì)則下載3篇
- 中軟統(tǒng)一終端安全管理平臺(tái)v90使用手冊(cè)
- 護(hù)理質(zhì)量管理PPT通用課件
- 氨水崗位應(yīng)知應(yīng)會(huì)手冊(cè).docx
- AQ-C1-19 安全教育記錄表(三級(jí))
- 廣東飼料項(xiàng)目建議書(參考范文)
- 鋁單板、玻璃幕墻建筑施工完整方案
- 六年級(jí)數(shù)學(xué)簡便計(jì)算易錯(cuò)題
- 工程造價(jià)咨詢公司質(zhì)量控制制度
- 《常用醫(yī)學(xué)檢查》PPT課件.ppt
- 《發(fā)展經(jīng)濟(jì)學(xué)派》PPT課件.ppt
- 雙層罐技術(shù)要求內(nèi)容
評(píng)論
0/150
提交評(píng)論