版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Page152024-2025學(xué)年高一上學(xué)期期末數(shù)學(xué)試題考試時(shí)間:120分鐘;滿分:150分一、單選題:(本題共8小題,每小題5分,共40分,每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)將正確選項(xiàng)填寫在答題卡上)1.已知集合,則()A. B. C. D.【答案】C【解析】【分析】化簡(jiǎn)集合,然后依據(jù)補(bǔ)集及交集的定義運(yùn)算即得.【詳解】因?yàn)?,,.故選:C.2.命題“,”的否定形式為()A., B.,C., D.,【答案】A【解析】【分析】依據(jù)特稱命題的否定形式即可求解.【詳解】命題“,”的否定是“,”,故選:.3.設(shè),則的大小關(guān)系為()A. B.C. D.【答案】A【解析】【分析】利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),結(jié)合臨界值即可得解.【詳解】因?yàn)樵谏蠁握{(diào)遞減,所以,因?yàn)樵谏蠁握{(diào)遞減,且恒成立,所以,因?yàn)樵谏蠁握{(diào)遞減,所以,綜上:.故選:A.4.已知函數(shù),則其部分大致圖像是()A. B.C. D.【答案】D【解析】【分析】依據(jù)函數(shù)的奇偶性及在上符號(hào)可得正確的選項(xiàng).【詳解】函數(shù)的定義域?yàn)镽,設(shè).因?yàn)?,所以函?shù)為奇函數(shù),圖像關(guān)于原點(diǎn)對(duì)稱,所以解除選項(xiàng)A,C.當(dāng)時(shí),,所以,故D正確.故選:D5.已知,對(duì)隨意的,恒成立,則實(shí)數(shù)的最小值是()A B. C. D.【答案】D【解析】【分析】可推斷出為上單調(diào)遞增的奇函數(shù),,恒成立,可轉(zhuǎn)化為恒成立,繼而可得恒成立,從而可得答案.【詳解】,且,∴為奇函數(shù),且在R上單調(diào)遞增,又,恒成立,∴恒成立,∴,即,時(shí),明顯不滿意題意;∴,解得:,∴實(shí)數(shù)a的最小值是,故選:D.6.已知偶函數(shù)在上單調(diào)遞減,且,則不等式的解集為()A. B. C. D.【答案】D【解析】【分析】分與兩種狀況,結(jié)合函數(shù)單調(diào)性,奇偶性及,解不等式,求出解集.【詳解】偶函數(shù)在上單調(diào)遞減,則在單調(diào)遞增,因?yàn)椋瑒t當(dāng)時(shí),,即,
故或,解得:或,或與取交集得:,則當(dāng)時(shí),,即故,解得:,與取交集,解集為空集,綜上:不等式的解集為.故選:D.7.已知,則()A. B. C. D.【答案】C【解析】【分析】依據(jù)已知式子結(jié)合同角三角函數(shù)的商數(shù)關(guān)系與平方關(guān)系,可求得的值,再由誘導(dǎo)公式求得的值.【詳解】解:①,由于代入①,得:,由于,所以,故,所以.故選:C.8.已知定義在上的函數(shù)單調(diào)遞減,且對(duì)隨意恒有,則函數(shù)的零點(diǎn)為()A B. C.2 D.4【答案】C【解析】【分析】設(shè),可得,依據(jù)單調(diào)性可得,從而可求,令可求零點(diǎn).【詳解】設(shè),則,方程等價(jià)為,令,則,滿意方程,∵函數(shù)單調(diào)遞減,∴值唯一,∴,由得,解得,故函數(shù)的零點(diǎn)為2.故選:C.二、多選題:(本題共4小題,每小題5分,共20分,每小題給出的四個(gè)選項(xiàng)中,至少有一項(xiàng)是符合題目要求的,請(qǐng)將正確選項(xiàng)填寫在答題卡上)9.已知實(shí)數(shù),,,則下列結(jié)論正確的是()A.的最小值是 B.的最小值是4C.的最小值是 D.的最大值是,【答案】BCD【解析】【分析】利用基本不等式和平方關(guān)系即可推斷選項(xiàng)AC,依據(jù)可利用基本不等式中“1”的妙用即可推斷B,將平方可求得其取值范圍,即可推斷D.【詳解】對(duì)于A,利用基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以的最大值是,故A錯(cuò)誤;對(duì)于B,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即B正確;對(duì)于C,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以C正確;對(duì)于D,由可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即的最大值是,故D正確.故應(yīng)選:BCD.10.已知函數(shù)是上的增函數(shù),則實(shí)數(shù)的值可以是()A.4 B.3 C. D.【答案】CD【解析】【分析】利用分段函數(shù)單調(diào)性建立不等關(guān)系,從而求出參數(shù)的取值范圍.【詳解】由函數(shù)是上的增函數(shù),所以所以,故選:CD.11.若函數(shù),則下列說法正確的是()A.若,則為偶函數(shù) B.若的定義域?yàn)镽,則C.若,則的單調(diào)增區(qū)間為 D.若在上單調(diào)遞減,則【答案】AB【解析】【分析】對(duì)于A選項(xiàng):依據(jù)偶函數(shù)的定義即可推斷;對(duì)于B選項(xiàng):依據(jù)二次函數(shù)在上恒成立的條件即可推斷;對(duì)于C選項(xiàng):求出的定義域,然后得到的單調(diào)增區(qū)間,即可推斷;對(duì)于D選項(xiàng):依據(jù)函數(shù)的定義域和復(fù)合函數(shù)的單調(diào)性即可推斷.【詳解】當(dāng)時(shí),,其定義域?yàn)?,且,所以為偶函?shù),故A正確;若的定義域?yàn)镽,則對(duì)恒成立,所以,,故B正確;當(dāng)時(shí),,由解得或,故的定義域?yàn)?,因?yàn)樵谏蠁握{(diào)遞減,在單調(diào)遞增,在定義域內(nèi)單調(diào)遞增,所以由復(fù)合函數(shù)的單調(diào)性可得的單調(diào)增區(qū)間為,故C錯(cuò)誤;若在上單調(diào)遞減,所以由復(fù)合函數(shù)單調(diào)性可得在上單調(diào)遞減,且都大于0,所以,且,解得:,故D錯(cuò)誤;故選:AB.12.(多選)某食品的保鮮時(shí)間t(單位:小時(shí))與貯存溫度x(單位:℃)滿意函數(shù)關(guān)系t=且該食品在4℃的保鮮時(shí)間是16小時(shí).已知甲在某日上午10時(shí)購(gòu)買了該食品,并將其遺放在室外,且此日的室外溫度隨時(shí)刻的改變?nèi)鐖D所示,則下列結(jié)論中正確的是()A.該食品在6℃的保鮮時(shí)間是8小時(shí)B.當(dāng)x∈[-6,6]時(shí),該食品的保鮮時(shí)間t隨著x的增大而漸漸削減C.到了此日13時(shí),甲所購(gòu)買的食品還在保鮮時(shí)間內(nèi)D.到了此日14時(shí),甲所購(gòu)買的食品已然過了保鮮時(shí)間【答案】AD【解析】【分析】由題設(shè)可得即可寫出解析式,再結(jié)合各選項(xiàng)的描述及函數(shù)圖象推斷正誤即可.【詳解】由題設(shè),可得,解得,∴,∴,則,A正確;時(shí),保鮮時(shí)間恒為64小時(shí),時(shí),保鮮時(shí)間隨增大而減小,B錯(cuò)誤;此日11時(shí),溫度超過11度,其保鮮時(shí)間不超過2小時(shí),故到13時(shí)甲所購(gòu)食品不在保鮮時(shí)間內(nèi),C錯(cuò)誤;由上分析知:此日14時(shí),甲所購(gòu)食品已過保鮮時(shí)間,D正確.故選:AD.三、填空題:(本題共4小題,每小題5分,共20分,把正確答案填在答題卡中的橫線上)13.是它與單位圓交點(diǎn)為的______條件.【答案】充分不必要【解析】【分析】依據(jù)充分不必要條件的概念推斷即可.【詳解】解:當(dāng)時(shí),它與單位圓的交點(diǎn)為,反之與單位圓的交點(diǎn)為,則,所以,是它與單位圓的交點(diǎn)為的充分不必要條件.故答案為:充分不必要14.已知,,則=__________.【答案】【解析】【分析】依據(jù),,三者的關(guān)系求解即可.【詳解】由已知,得,兩邊平方得,整理得,所以,由知,,又,,即,故;,故答案為:.15.若實(shí)數(shù)x,y滿意,且,則的最小值為___________.【答案】8【解析】【分析】由給定條件可得,再變形配湊借助均值不等式計(jì)算作答.【詳解】由得:,又實(shí)數(shù)x,y滿意,則,當(dāng)且僅當(dāng),即時(shí)取“=”,由解得:,所以當(dāng)時(shí),取最小值8.故答案為:8【點(diǎn)睛】思路點(diǎn)睛:在運(yùn)用基本不等式時(shí),要特殊留意“拆”、“拼”、“湊”等技巧,運(yùn)用其滿意基本不等式的“一正”、“二定”、“三相等”的條件.16.已知偶函數(shù),當(dāng)時(shí),,若函數(shù)恰有4個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為__________【答案】【解析】【分析】作出函數(shù)的圖象,將問題轉(zhuǎn)化為函數(shù)與有4個(gè)不同的交點(diǎn),由圖示可得答案.【詳解】解:作出函數(shù)的圖象如下圖所示,令,則,若函數(shù)恰有4個(gè)不同的零點(diǎn),則需函數(shù)與有4個(gè)不同的交點(diǎn),所以實(shí)數(shù)的取值范圍為,故答案為:.四、解答題:(本題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟)17.已知,且.(1)求的值;(2)求的值.【答案】(1)(2)【解析】【分析】(1)依據(jù)誘導(dǎo)公式化簡(jiǎn)得,平方得,進(jìn)而可求解,(2)依據(jù)誘導(dǎo)公式以及立方差公式即可求解.【小問1詳解】由可得,將其兩邊平方得,由于,故,進(jìn)而得,因此,【小問2詳解】18計(jì)算:(1);(2).【答案】(1)(2)【解析】【分析】(1)利用指數(shù)的運(yùn)算性質(zhì)計(jì)算可得出所求代數(shù)式的值;(2)利用對(duì)數(shù)、指數(shù)的運(yùn)算性質(zhì)計(jì)算可得出所求代數(shù)式的值.【小問1詳解】解:原式.【小問2詳解】解:原式.19.已知函數(shù)(a為常數(shù))和函數(shù),且為奇函數(shù).(1)求實(shí)數(shù)a的值;(2)設(shè)不等式恒成立,試求實(shí)數(shù)的范圍.【答案】(1)1(2)【解析】【分析】(1)依據(jù)奇函數(shù)的定義求出a;(2)運(yùn)用參數(shù)分別法,構(gòu)造函數(shù),運(yùn)用函數(shù)的單調(diào)性求解.【小問1詳解】為奇函數(shù),,即,解得,經(jīng)檢驗(yàn)符合題意;【小問2詳解】由,得,則,而,,,,實(shí)數(shù)的取值范圍是;20.近年來(lái),我國(guó)在航天領(lǐng)域取得了巨大成就,得益于我國(guó)先進(jìn)的運(yùn)載火箭技術(shù).據(jù)了解,在不考慮空氣阻力和地球引力的志向狀態(tài)下,可以用公式計(jì)算火箭的最大速度v(單位:m/s).其中(單位m/s)是噴流相對(duì)速度,m(單位:kg)是火箭(除推動(dòng)劑外)的質(zhì)量,M(單位:kg)是推動(dòng)劑與火箭質(zhì)量的總和,稱為“總質(zhì)比”,已知A型火箭的噴流相對(duì)速度為2000m/s.參考數(shù)據(jù):.(1)當(dāng)總質(zhì)比為230時(shí),利用給出的參考數(shù)據(jù)求A型火箭的最大速度;(2)經(jīng)過材料更新和技術(shù)改進(jìn)后,A型火箭的噴流相對(duì)速度提高到了原來(lái)的1.5倍,總質(zhì)比變?yōu)樵瓉?lái)的,若要使火箭的最大速度至少增加500m/s,求在材料更新和技術(shù)改進(jìn)前總質(zhì)比最小整數(shù)值?【答案】(1)(2)45【解析】【分析】(1)依據(jù)最大速度公式求得正確答案.(2)依據(jù)火箭最大速度的要求列不等式,由此求得正確答案.【小問1詳解】當(dāng)總質(zhì)比為230時(shí),,即型火箭的最大速度為.【小問2詳解】型火箭的噴流相對(duì)速度提高到了原來(lái)的1.5倍,所以型火箭的噴流相對(duì)速度為,總質(zhì)比為,由題意得:因?yàn)?,所以,所以在材料更新和技術(shù)改進(jìn)前總質(zhì)比最小整數(shù)值為45.21.已知(1)求的解析式,并求函數(shù)的零點(diǎn);(2)若,求;(3)若對(duì)隨意,不等式恒成立,求實(shí)數(shù)的最大值.【答案】(1),零點(diǎn)為(2)7(3)4【解析】【分析】(1)由換元法帶入求解的解析式,再令解出即得零點(diǎn);(2)由(1)知的解析式,令化簡(jiǎn),再代入中即可求得結(jié)果;(3)首先分別參數(shù),轉(zhuǎn)化成基本不等式即可求得實(shí)數(shù)的最大值.【小問1詳解】令,則,因此,即.由得,解得,即函數(shù)的零點(diǎn)為.【小問2詳解】由(1)知,因此由得,所以.【小問3詳解】由條件知.因?yàn)閷?duì)于恒成立,且,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以對(duì)于恒成立.而,當(dāng)且僅當(dāng)即時(shí),等號(hào)成立,所以,因此實(shí)數(shù)的最大值為4.22.已知二次函數(shù)的最小值為1,且滿意,,點(diǎn)在冪函數(shù)的圖像上.(1)求和的解析式;(2)定義函數(shù)試畫出函數(shù)的圖象,并求函數(shù)的定義域、值域和單調(diào)區(qū)間.【答案】(1);(2)作圖見解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)地產(chǎn)綠化商業(yè)計(jì)劃書
- 2024-2030年中國(guó)咸菜市場(chǎng)發(fā)展前景調(diào)研與投資策略分析報(bào)告
- 2024-2030年中國(guó)印花熱熔膠融資商業(yè)計(jì)劃書
- 2024年體育用品銷售租賃合同
- 滿洲里俄語(yǔ)職業(yè)學(xué)院《STEM課程教學(xué)與微課制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年兒童個(gè)性化教育服務(wù)聘請(qǐng)教師勞動(dòng)合同模板3篇
- 2024年房屋中介居間協(xié)議2篇
- 漯河醫(yī)學(xué)高等??茖W(xué)?!懂嫹◣缀闻c土建制圖》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年銅川貨運(yùn)從業(yè)資格證模擬考試下載什么軟件
- 2024年標(biāo)準(zhǔn)格式個(gè)人等額本息貸款合同版B版
- 當(dāng)前臺(tái)海局勢(shì)分析課件
- 五金采購(gòu)工作總結(jié)
- 蘇教版三年級(jí)上冊(cè)解決問題的策略應(yīng)用題100題及答案
- 質(zhì)量管理中的流程改進(jìn)與優(yōu)化
- 成長(zhǎng)賽道-模板參考
- 室外晾衣棚施工方案
- 兒童健康管理服務(wù)總結(jié)分析報(bào)告
- 殯葬行業(yè)的風(fēng)險(xiǎn)分析
- 通信工程冬季施工安全培訓(xùn)
- 痛風(fēng)病科普講座課件
- 工作崗位風(fēng)險(xiǎn)評(píng)估報(bào)告
評(píng)論
0/150
提交評(píng)論