版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁南京師范大學中北學院
《計算與人工智能》2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題2分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在自然語言處理領(lǐng)域,情感分析是一項重要的任務。假設(shè)要分析大量的在線商品評論,以確定消費者對產(chǎn)品的態(tài)度是積極、消極還是中性。在進行情感分析時,以下哪種方法可能不是最有效的?()A.基于詞典的方法,通過查找預定義的情感詞來判斷情感傾向B.利用深度學習模型,如循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),自動學習語言的特征和模式C.僅僅依靠人工閱讀和判斷,不使用任何自動化的技術(shù)D.結(jié)合詞向量和機器學習分類算法,如支持向量機(SVM)2、人工智能中的人工神經(jīng)網(wǎng)絡(luò)具有強大的學習能力。假設(shè)我們正在訓練一個多層神經(jīng)網(wǎng)絡(luò)來預測股票價格的走勢。如果網(wǎng)絡(luò)的訓練數(shù)據(jù)包含了過多的噪聲,會產(chǎn)生什么后果?()A.網(wǎng)絡(luò)的泛化能力增強B.網(wǎng)絡(luò)的訓練速度加快C.網(wǎng)絡(luò)可能對新的數(shù)據(jù)預測不準確D.網(wǎng)絡(luò)的結(jié)構(gòu)變得更加復雜3、人工智能中的預訓練語言模型,如GPT-3,在自然語言處理任務中取得了顯著成果。假設(shè)要將預訓練語言模型應用于特定領(lǐng)域的文本分類任務,以下關(guān)于預訓練模型應用的描述,正確的是:()A.可以直接使用預訓練模型進行分類,無需任何微調(diào)就能獲得良好的效果B.預訓練模型的參數(shù)是固定的,不能根據(jù)新的任務和數(shù)據(jù)進行調(diào)整C.在預訓練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進行微調(diào),可以提高在該領(lǐng)域任務中的性能D.預訓練語言模型對計算資源要求不高,任何設(shè)備都能輕松應用4、在人工智能的倫理原則中,“公平性”是一個重要的考量因素。假設(shè)一個人工智能招聘系統(tǒng)對不同性別、種族的候選人給出了不同的評價結(jié)果。以下關(guān)于解決這種公平性問題的方法,哪一項是不正確的?()A.對數(shù)據(jù)進行預處理,消除可能導致偏差的因素B.定期審查和更新模型,以確保其公平性C.故意引入偏差,以平衡不同群體之間的差異D.建立公平性評估指標,對模型進行監(jiān)測和改進5、人工智能中的自動推理技術(shù)旨在讓計算機能夠自動進行邏輯推理和證明。假設(shè)要開發(fā)一個能夠自動解決數(shù)學定理證明問題的系統(tǒng),以下關(guān)于自動推理的描述,正確的是:()A.現(xiàn)有的自動推理技術(shù)可以輕松解決所有復雜的數(shù)學定理證明問題B.自動推理系統(tǒng)只需要基于固定的推理規(guī)則,不需要學習和適應新的推理模式C.結(jié)合機器學習和符號推理的方法,可以提高自動推理系統(tǒng)的能力和靈活性D.自動推理在人工智能中的應用范圍非常有限,沒有實際價值6、人工智能中的遷移學習可以利用已有的預訓練模型來加速新任務的學習。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓練好的模型遷移到醫(yī)學圖像分析任務中,以下關(guān)于遷移學習的步驟,哪一項是不準確的?()A.凍結(jié)預訓練模型的部分層,只訓練特定任務相關(guān)的層B.直接在新的醫(yī)學圖像數(shù)據(jù)集上微調(diào)整個預訓練模型C.對新的數(shù)據(jù)集進行數(shù)據(jù)增強,以增加數(shù)據(jù)的多樣性D.分析預訓練模型和新任務之間的差異,選擇合適的遷移策略7、人工智能中的聯(lián)邦學習技術(shù)旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型訓練。假設(shè)多個機構(gòu)想要聯(lián)合訓練一個人工智能模型,同時保護各自的數(shù)據(jù)隱私,以下關(guān)于聯(lián)邦學習的描述,正確的是:()A.聯(lián)邦學習可以在不共享原始數(shù)據(jù)的情況下,直接合并各機構(gòu)的模型參數(shù)進行訓練B.聯(lián)邦學習過程中不存在通信開銷和安全風險C.采用加密技術(shù)和模型參數(shù)交換的方式,聯(lián)邦學習能夠在保護數(shù)據(jù)隱私的前提下協(xié)同訓練模型D.聯(lián)邦學習只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復雜的任務不適用8、人工智能在金融領(lǐng)域的應用包括風險評估、欺詐檢測等。假設(shè)一家銀行要利用人工智能進行客戶信用評估。以下關(guān)于人工智能在金融領(lǐng)域應用的描述,哪一項是不正確的?()A.可以通過分析客戶的交易記錄、信用歷史等多維度數(shù)據(jù)來評估信用風險B.人工智能模型能夠自適應地學習和更新,以適應不斷變化的金融市場環(huán)境C.人工智能的決策結(jié)果完全可靠,不需要人類專家的監(jiān)督和審核D.可以幫助金融機構(gòu)降低成本,提高風險控制的準確性和效率9、人工智能中的知識圖譜技術(shù)可以將實體、關(guān)系和屬性以圖的形式表示,為智能應用提供豐富的語義信息。假設(shè)要構(gòu)建一個關(guān)于歷史事件的知識圖譜,需要整合大量的文本、圖像和音頻資料。以下哪種方法在知識抽取和融合方面最為關(guān)鍵?()A.自然語言處理技術(shù)B.圖像識別技術(shù)C.音頻處理技術(shù)D.以上技術(shù)綜合運用10、深度學習中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類等任務中取得了顯著成果。假設(shè)要使用CNN對大量的動物圖片進行分類。以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項是不正確的?()A.卷積層通過卷積操作提取圖像的局部特征B.池化層用于減少特征圖的尺寸,降低計算量,同時保留主要特征C.隨著網(wǎng)絡(luò)層數(shù)的增加,CNN的性能一定會不斷提高D.可以通過調(diào)整卷積核的大小、數(shù)量和網(wǎng)絡(luò)結(jié)構(gòu)來優(yōu)化CNN的性能11、在人工智能的模型訓練中,超參數(shù)的調(diào)整是一個關(guān)鍵步驟。假設(shè)正在訓練一個用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項是不太可取的?()A.基于經(jīng)驗和直覺,隨機選擇一組超參數(shù)進行試驗B.使用網(wǎng)格搜索或隨機搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實踐中常用的超參數(shù)設(shè)置D.利用自動超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗證集的性能自動尋找最優(yōu)超參數(shù)12、在人工智能的情感計算中,需要從人的面部表情、語音語調(diào)、文字等多模態(tài)信息中識別情感。假設(shè)要綜合分析這些多模態(tài)信息來準確判斷一個人的情感狀態(tài),以下哪種融合方式是有效的?()A.早期融合,在數(shù)據(jù)層面進行整合B.晚期融合,在決策層面進行整合C.不進行融合,分別處理每個模態(tài)的信息D.隨機選擇一種模態(tài)的信息進行分析13、在人工智能的研究中,強化學習被廣泛應用于智能體的決策和優(yōu)化問題。假設(shè)一個智能機器人需要在復雜的環(huán)境中學習如何行走并避開障礙物,以最快的速度到達目標位置。在這種情況下,以下哪種強化學習算法能夠使機器人更快地學習到有效的策略,同時具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法14、在人工智能的研究中,模型的可解釋性是一個重要的問題。假設(shè)開發(fā)了一個用于預測股票價格的人工智能模型,但用戶對模型的決策過程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶更好地理解模型是如何做出預測的?()A.繪制復雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量15、當利用人工智能技術(shù)進行股票市場的預測時,需要綜合考慮多種因素,如公司財務數(shù)據(jù)、宏觀經(jīng)濟指標、市場情緒等。在這種復雜的場景下,以下哪種人工智能方法可能具有較大的潛力?()A.基于規(guī)則的專家系統(tǒng)B.強化學習C.遺傳算法D.模糊邏輯16、在人工智能的模型部署階段,需要考慮許多實際問題。假設(shè)要將一個訓練好的人工智能模型部署到移動設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的方法,哪一項是不正確的?()A.采用量化技術(shù),減少模型的參數(shù)精度B.進行模型剪枝,去除不重要的連接和神經(jīng)元C.直接將訓練好的模型原封不動地部署到移動設(shè)備上,不進行任何優(yōu)化D.使用知識蒸餾技術(shù),將復雜模型的知識遷移到較小的模型中17、人工智能中的自動規(guī)劃和調(diào)度問題在許多領(lǐng)域都有應用,如生產(chǎn)制造、物流配送等。假設(shè)一個工廠要安排生產(chǎn)任務,需要考慮機器的可用性、訂單的優(yōu)先級和交貨日期等約束條件。以下哪種自動規(guī)劃算法在處理這種復雜的約束滿足問題上最為高效?()A.A*算法B.遺傳算法C.模擬退火算法D.蟻群算法18、在人工智能的研究領(lǐng)域中,自然語言處理是重要的一部分。假設(shè)我們要開發(fā)一個能夠自動回答用戶問題的智能客服系統(tǒng),需要對大量的文本數(shù)據(jù)進行學習和分析。以下哪種技術(shù)在處理自然語言的語義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語義網(wǎng)絡(luò)D.語音識別19、人工智能中的知識圖譜用于表示實體之間的關(guān)系和知識。假設(shè)一個知識圖譜被用于智能問答系統(tǒng),以下關(guān)于知識圖譜的描述,正確的是:()A.知識圖譜中的知識是固定不變的,不能進行更新和擴展B.知識圖譜能夠自動從大量文本中抽取知識,無需人工干預C.可以通過知識圖譜的推理功能發(fā)現(xiàn)隱藏的知識和關(guān)系D.知識圖譜只適用于特定領(lǐng)域的知識表示,通用性較差20、人工智能中的元學習技術(shù)旨在讓模型能夠快速適應新的任務和數(shù)據(jù)分布。假設(shè)要開發(fā)一個能夠在不同領(lǐng)域的小樣本學習任務中表現(xiàn)良好的元學習模型,以下哪種元學習方法在泛化能力和學習效率方面具有更大的潛力?()A.基于模型的元學習B.基于優(yōu)化的元學習C.基于度量的元學習D.以上方法結(jié)合使用二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述人工智能中的倫理問題和挑戰(zhàn)。2、(本題5分)說明人工智能在音頻處理和音樂創(chuàng)作中的探索。3、(本題5分)說明人工智能在稅務規(guī)劃和合規(guī)中的應用。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)研究一個利用人工智能進行能源管理的系統(tǒng),如智能電網(wǎng)中的應用,分析其如何優(yōu)化能源分配和降低消耗。2、(本題5分)分析某款智能寫作助手的功能和對寫作過程的幫助。3、(本題5分)分析一個基于人工智能的剪紙藝術(shù)設(shè)計系統(tǒng),探討其圖案創(chuàng)新和工藝指導功能。4、(本題5分)分析一個利用人工智能進行電影劇本創(chuàng)作的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑行業(yè)員工激勵方法總結(jié)
- 銀行市場營銷總結(jié)
- 食品行業(yè)行政后勤工作總結(jié)
- 地產(chǎn)行業(yè)銷售員工作總結(jié)
- 2024年秋八年級上冊新目標英語全冊課文重難點講解
- 2024物業(yè)客服個人年終總結(jié)范文(35篇)
- 農(nóng)村小產(chǎn)權(quán)房購房合同(2篇)
- 《物權(quán)法草案》課件
- DB33T 2143-2018 森林撫育目標樹選擇和密度控制技術(shù)規(guī)程
- 2025正規(guī)委托合同范文
- 職業(yè)安全健康現(xiàn)場檢查記錄表參考范本
- 口袋妖怪白金二周目圖文攻略(精編版)
- 安全風險研判與承諾公告制度管理辦法(最新)
- 體育與健康課一年級(水平一)課時教案全冊
- SAP-ABAP-實用培訓教程
- 配電房施工組織設(shè)計方案(土建部分)
- 國家開放大學電大??啤队⒄Z教學法》2023-2024期末試題及答案(試卷代號:2145)
- 年產(chǎn)30萬噸合成氨脫碳工段工藝設(shè)計
- 管樁水平承載力計算
- 塑膠產(chǎn)品成型周期公式及計算
- 事業(yè)單位領(lǐng)導班子考核測評表
評論
0/150
提交評論