版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省徐州市銅山中學2025屆高三下學期第六次檢測數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中,點在邊上,平分,若,,,,則()A. B. C. D.2.已知函數(shù)滿足,設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知關于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.4.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣125.復數(shù)(i為虛數(shù)單位)的共軛復數(shù)是A.1+i B.1?i C.?1+i D.?1?i6.已知復數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣27.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.8.設復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.710.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.11.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.12.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.14.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______15.在平面五邊形中,,,,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是______.16.如圖所示梯子結(jié)構(gòu)的點數(shù)依次構(gòu)成數(shù)列,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調(diào)查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)18.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.19.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項是1.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,是數(shù)列的前項和,求使成立的正整數(shù)的值.20.(12分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標.21.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變?yōu)辄c(1,1).求實數(shù)a,k的值.22.(10分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.2、B【解析】
結(jié)合函數(shù)的對應性,利用充分條件和必要條件的定義進行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對應性是解決本題的關鍵,屬于基礎題.3、C【解析】
先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.4、D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結(jié)果.【詳解】設,聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎題。5、B【解析】分析:化簡已知復數(shù)z,由共軛復數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復數(shù)為1﹣i.故選B.點睛:本題考查復數(shù)的代數(shù)形式的運算,涉及共軛復數(shù),屬基礎題.6、D【解析】
化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎題.7、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.8、D【解析】
先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內(nèi)對應的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.9、C【解析】
根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關鍵是理解程序框圖運行的過程.10、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.11、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項.【詳解】函數(shù)的定義域為,在上為減函數(shù).A選項,的定義域為,在上為增函數(shù),不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數(shù),符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎題.12、B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關系,轉(zhuǎn)化思想的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,,所以,,,又二面角的大小為,則,,所以,設外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數(shù)形結(jié)合,建立關于球的半徑的方程,本題計算量較大,是一道難題.14、【解析】
由,則,所以點,因為,可得,點坐標化簡為,代入雙曲線的方程求解.【詳解】設,則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關系,及三角恒等變換,還考查了運算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.15、【解析】
設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結(jié)合三角形的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質(zhì)可知,直線與的交點為幾何體外接球的球心,取的中點,連接,,由條件得,,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結(jié)構(gòu)特征,求得外接球的半徑是解答的關鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.16、【解析】
根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點睛】本題考查了等差數(shù)列的應用,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)填表見解析;有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”(2)①詳見解析②期望;方差【解析】
(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據(jù)分析知,計算出期望與方差.【詳解】(1)分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時15419線上學習時間不足5小時101626合計252045有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”.(2)①由分層抽樣知,需要從不足120分的學生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設從全校不少于120分的學生中隨機抽取20人,這些人中每周線上學習時間不少于5小時的人數(shù)為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數(shù)學期望與方差的計算問題,屬于基礎題.18、(1)(2)【解析】
(1)化簡得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計算得到答案.【詳解】(1)因為,故或或解得或,故不等式的解集為.(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因為,所以,當且僅當時,等號成立,故的最小值是3.【點睛】本題考查了解不等式,均值不等式求最值,意在考查學生的計算能力和轉(zhuǎn)化能力.19、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,可得所求通項公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點睛】本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,以及方程思想和運算能力,屬于中檔題.20、(1);(2)或【解析】
(1)根據(jù)的周長為,結(jié)合離心率,求出,即可求出方程;(2)設,則,求出直線方程,若斜率不存在,求出坐標,直接驗證是否滿足題意,若斜率存在,求出其方程,與直線方程聯(lián)立,求出點坐標,根據(jù)和三點共線,將點坐標用表示,坐標代入橢圓方程,即可求解.【詳解】(1)因為橢圓的離心率為,的周長為6,設橢圓的焦距為,則解得,,,所以橢圓方程為.(2)設,則,且,所以的方程為①.若,則的方程為②,由對稱性不妨令點在軸上方,則,,聯(lián)立①,②解得即.的方程為,代入橢圓方程得,整理得,或,.,不符合條件.若,則的方程為,即③.聯(lián)立①,③可解得所以.因為,設所以,即.又因為位于軸異側(cè),所以.因為三點共線,即應與共線,所以,即,所以,又,所以,解得,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年股份代持協(xié)議
- 顴部褐青色痣病因介紹
- 阿洪病病因介紹
- 全國賽課一等獎初中統(tǒng)編版七年級道德與法治上冊《正確對待順境和逆境》獲獎課件
- 《電機技術應用》課件 2.1.1 異步電動機結(jié)構(gòu)
- 幼兒園2024-2025學年度園務工作計劃
- (范文)花瓶項目立項報告
- (2024)茶業(yè)初精制加工生產(chǎn)線技術改造項目可行性研究報告寫作模板
- 2023年氫氧化鍶項目融資計劃書
- 【CSA GCR】大語言模型威脅分類
- 心理健康與大學生活學習通超星期末考試答案章節(jié)答案2024年
- 借款協(xié)議(父母借款給子女買房協(xié)議)(二篇)
- 外研版英語2024七年級上冊全冊單元知識清單(記憶版)
- 國家開放大學電大本科《工程經(jīng)濟與管理》2023-2024期末試題及答案(試卷代號:1141)
- 歌唱語音智慧樹知到期末考試答案章節(jié)答案2024年齊魯師范學院
- MOOC 美在民間-南京農(nóng)業(yè)大學 中國大學慕課答案
- 中國馬克思主義與當代課后習題答案
- 神經(jīng)遞質(zhì)與受體
- 智能系統(tǒng)工程自評報告
- 賽柏斯涂層防水施工工法
- 2_電壓降計算表(10kV及以下線路)
評論
0/150
提交評論