吉林省長(zhǎng)春市雙陽(yáng)區(qū)長(zhǎng)春一五一中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
吉林省長(zhǎng)春市雙陽(yáng)區(qū)長(zhǎng)春一五一中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
吉林省長(zhǎng)春市雙陽(yáng)區(qū)長(zhǎng)春一五一中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
吉林省長(zhǎng)春市雙陽(yáng)區(qū)長(zhǎng)春一五一中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
吉林省長(zhǎng)春市雙陽(yáng)區(qū)長(zhǎng)春一五一中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省長(zhǎng)春市雙陽(yáng)區(qū)長(zhǎng)春一五一中學(xué)2025屆高三第三次模擬考試數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.82.已知復(fù)數(shù)滿足,則的值為()A. B. C. D.23.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.4.若不等式對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.若為過(guò)橢圓中心的弦,為橢圓的焦點(diǎn),則△面積的最大值為()A.20 B.30 C.50 D.606.函數(shù)在的圖像大致為A. B. C. D.7.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類(lèi)比“趙爽弦圖”.可類(lèi)似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.8.已知函數(shù),若,則的值等于()A. B. C. D.9.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.10.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.12.在正方體中,E是棱的中點(diǎn),F(xiàn)是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線垂直,如圖所示,下列說(shuō)法不正確的是()A.點(diǎn)F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值二、填空題:本題共4小題,每小題5分,共20分。13.已知變量(m>0),且,若恒成立,則m的最大值________.14.已知雙曲線C:()的左、右焦點(diǎn)為,,為雙曲線C上一點(diǎn),且,若線段與雙曲線C交于另一點(diǎn)A,則的面積為_(kāi)_____.15.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.16.已知點(diǎn)M是曲線y=2lnx+x2﹣3x上一動(dòng)點(diǎn),當(dāng)曲線在M處的切線斜率取得最小值時(shí),該切線的方程為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知.(1)解不等式;(2)若均為正數(shù),且,求的最小值.18.(12分)如圖在直角中,為直角,,,分別為,的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,連接,,為的中點(diǎn).(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.19.(12分)如圖,在三棱柱中,、、分別是、、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.20.(12分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過(guò)點(diǎn)且與直線平行的直線交于,兩點(diǎn),求點(diǎn)到,的距離之積.21.(12分)為增強(qiáng)學(xué)生的法治觀念,營(yíng)造“學(xué)憲法、知憲法、守憲法”的良好校園氛圍,某學(xué)校開(kāi)展了“憲法小衛(wèi)士”活動(dòng),并組織全校學(xué)生進(jìn)行法律知識(shí)競(jìng)賽.現(xiàn)從全校學(xué)生中隨機(jī)抽取50名學(xué)生,統(tǒng)計(jì)他們的競(jìng)賽成績(jī),已知這50名學(xué)生的競(jìng)賽成績(jī)均在[50,100]內(nèi),并得到如下的頻數(shù)分布表:分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競(jìng)賽成績(jī)?cè)趦?nèi)定義為“合格”,競(jìng)賽成績(jī)?cè)趦?nèi)定義為“不合格”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“法律知識(shí)競(jìng)賽成績(jī)是否合格”與“是否是高一新生”有關(guān)?合格不合格合計(jì)高一新生12非高一新生6合計(jì)(2)在(1)的前提下,按“競(jìng)賽成績(jī)合格與否”進(jìn)行分層抽樣,從這50名學(xué)生中抽取5名學(xué)生,再?gòu)倪@5名學(xué)生中隨機(jī)抽取2名學(xué)生,求這2名學(xué)生競(jìng)賽成績(jī)都合格的概率.參考公式及數(shù)據(jù):,其中.22.(10分)已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且.證明:直線與圓相切;求面積的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.2、C【解析】

由復(fù)數(shù)的除法運(yùn)算整理已知求得復(fù)數(shù)z,進(jìn)而求得其模.【詳解】因?yàn)?,所以故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.3、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.4、B【解析】

轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點(diǎn)睛】本題考查了導(dǎo)數(shù)在恒成立問(wèn)題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、D【解析】

先設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,在表示出面積,由圖象遏制,當(dāng)點(diǎn)A在橢圓的頂點(diǎn)時(shí),此時(shí)面積最大,再結(jié)合橢圓的標(biāo)準(zhǔn)方程,即可求解.【詳解】由題意,設(shè)A點(diǎn)的坐標(biāo)為,根據(jù)對(duì)稱性可得,則的面積為,當(dāng)最大時(shí),的面積最大,由圖象可知,當(dāng)點(diǎn)A在橢圓的上下頂點(diǎn)時(shí),此時(shí)的面積最大,又由,可得橢圓的上下頂點(diǎn)坐標(biāo)為,所以的面積的最大值為.故選:D.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單的幾何性質(zhì),以及三角形面積公式的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及化歸與轉(zhuǎn)化思想的應(yīng)用.6、B【解析】

由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點(diǎn)成中心對(duì)稱,排除選項(xiàng)C.又排除選項(xiàng)D;,排除選項(xiàng)A,故選B.【點(diǎn)睛】本題通過(guò)判斷函數(shù)的奇偶性,縮小考察范圍,通過(guò)計(jì)算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.7、A【解析】

根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題.8、B【解析】

由函數(shù)的奇偶性可得,【詳解】∵其中為奇函數(shù),也為奇函數(shù)∴也為奇函數(shù)∴故選:B【點(diǎn)睛】函數(shù)奇偶性的運(yùn)用即得結(jié)果,小記,定義域關(guān)于原點(diǎn)對(duì)稱時(shí)有:①奇函數(shù)±奇函數(shù)=奇函數(shù);②奇函數(shù)×奇函數(shù)=偶函數(shù);③奇函數(shù)÷奇函數(shù)=偶函數(shù);④偶函數(shù)±偶函數(shù)=偶函數(shù);⑤偶函數(shù)×偶函數(shù)=偶函數(shù);⑥奇函數(shù)×偶函數(shù)=奇函數(shù);⑦奇函數(shù)÷偶函數(shù)=奇函數(shù)9、C【解析】

由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,據(jù)此可計(jì)算出答案.【詳解】由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,該幾何體的表面積.故選:C【點(diǎn)睛】本題主要考查了三視圖的知識(shí),幾何體的表面積的計(jì)算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.10、B【解析】

化簡(jiǎn)復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對(duì)應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對(duì)應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.11、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.12、C【解析】

分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷.【詳解】對(duì)于,設(shè)平面與直線交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點(diǎn)是線段上上的動(dòng)點(diǎn).正確.對(duì)于,平面平面,和平面相交,與是異面直線,正確.對(duì)于,由知,平面平面,與不可能平行,錯(cuò)誤.對(duì)于,因?yàn)?,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點(diǎn)睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

在不等式兩邊同時(shí)取對(duì)數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】不等式兩邊同時(shí)取對(duì)數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點(diǎn)睛】本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對(duì)數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵14、【解析】

由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點(diǎn)A坐標(biāo)為,所以.【點(diǎn)睛】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計(jì)算能力,難度較難.15、1【解析】

按照個(gè)位上的9元的支付情況分類(lèi),三個(gè)數(shù)位上的錢(qián)數(shù)分步計(jì)算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時(shí),200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;②當(dāng)9元采用方式支付時(shí):200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時(shí)共有種支付方式;所以總的支付方式共有種.故答案為:1.【點(diǎn)睛】本題考查了分類(lèi)加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,屬于中檔題.做題時(shí)注意分類(lèi)做到不重不漏,分步做到步驟完整.16、【解析】

先求導(dǎo)數(shù)可得切線斜率,利用基本不等式可得切點(diǎn)橫坐標(biāo),從而可得切線方程.【詳解】,,=1時(shí)有最小值1,此時(shí)M(1,﹣2),故切線方程為:,即.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,切點(diǎn)處的導(dǎo)數(shù)值等于切線的斜率是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】

(1)利用零點(diǎn)分段討論法可求不等式的解.(2)利用柯西不等式可求的最小值.【詳解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(當(dāng)且僅當(dāng)時(shí)取“=”).所以的最小值為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及利用柯西不等式求最值.解絕對(duì)值不等式的基本方法有零點(diǎn)分段討論法、圖象法、平方法等,利用零點(diǎn)分段討論法時(shí)注意分類(lèi)點(diǎn)的合理選擇,利用平方去掉絕對(duì)值符號(hào)時(shí)注意代數(shù)式的正負(fù),而利用圖象法求解時(shí)注意圖象的正確刻畫(huà).利用柯西不等式求最值時(shí)注意把原代數(shù)式配成平方和的乘積形式,本題屬于中檔題.18、(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】

(Ⅰ)取中點(diǎn),連結(jié)、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點(diǎn),、、所在直線分別為,,軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【詳解】證明:(Ⅰ)取中點(diǎn),連結(jié)、,∵,,∴四邊形是平行四邊形,∵,,,∴,∴,∴,在中,,又∵為的中點(diǎn),∴,又∵,∴.解:(Ⅱ)∵,,,∴,以為原點(diǎn),、、所在直線分別為,,軸,建立空間直角坐標(biāo)系,設(shè),則,,,,∴,,,設(shè)面的法向量,則,取,得,同理,得平面的法向量,設(shè)二面角的平面角為,則,∴二面角的余弦值為.【點(diǎn)睛】本題考查面面垂直及線面垂直性質(zhì)定理、線面垂直判定與性質(zhì)定理以及利用空間向量求線面角與二面角,考查基本分析求解能力,屬中檔題.19、(1)證明見(jiàn)解析;(2).【解析】

(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計(jì)算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),、分別為、的中點(diǎn),則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點(diǎn),,,平面,且,因此,到平面的距離為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了點(diǎn)到平面距離的計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.20、(1)曲線:,直線的直角坐標(biāo)方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達(dá)定理得點(diǎn)到,的距離

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論