2025屆山東省菏澤、煙臺(tái)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
2025屆山東省菏澤、煙臺(tái)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
2025屆山東省菏澤、煙臺(tái)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
2025屆山東省菏澤、煙臺(tái)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
2025屆山東省菏澤、煙臺(tái)高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆山東省菏澤、煙臺(tái)高三第二次調(diào)研數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若不等式在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.2.若,則的虛部是()A. B. C. D.3.三棱錐的各個(gè)頂點(diǎn)都在求的表面上,且是等邊三角形,底面,,,若點(diǎn)在線段上,且,則過點(diǎn)的平面截球所得截面的最小面積為()A. B. C. D.4.過拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則()A. B. C. D.5.設(shè),,分別是中,,所對(duì)邊的邊長(zhǎng),則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直6.已知函,,則的最小值為()A. B.1 C.0 D.7.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.8.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.129.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣210.已知的展開式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.311.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動(dòng),記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.12.記單調(diào)遞增的等比數(shù)列的前項(xiàng)和為,若,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,三條側(cè)棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.14.在中,角A,B,C的對(duì)邊分別為a,b,c,且,則________.15.設(shè)等比數(shù)列的前項(xiàng)和為,若,則數(shù)列的公比是.16.在中,角,,的對(duì)邊分別是,,,若,,則的面積的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),將的圖象向左移個(gè)單位,得到函數(shù)的圖象.(1)若,求的單調(diào)區(qū)間;(2)若,的一條對(duì)稱軸是,求在的值域.18.(12分)11月,2019全國(guó)美麗鄉(xiāng)村籃球大賽在中國(guó)農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過計(jì)算機(jī)計(jì)算可估計(jì)得,請(qǐng)根據(jù)①中的值分別寫出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.19.(12分)設(shè)等差數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求的前項(xiàng)和及使得最小的的值.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.(1)求直線和圓的普通方程;(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.21.(12分)在直角坐標(biāo)系中,是過定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.22.(10分)在四棱錐中,是等邊三角形,點(diǎn)在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點(diǎn),若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點(diǎn),得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),結(jié)合圖象,可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)函數(shù),,因?yàn)?,所以,或,因?yàn)闀r(shí),,或時(shí),,,其圖象如下:當(dāng)時(shí),至多一個(gè)整數(shù)根;當(dāng)時(shí),在內(nèi)的解集中僅有三個(gè)整數(shù),只需,,所以.故選:C.【點(diǎn)睛】本題考查不等式的解法和應(yīng)用問題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時(shí)考查數(shù)形結(jié)合思想和解題能力.2、D【解析】

通過復(fù)數(shù)的乘除運(yùn)算法則化簡(jiǎn)求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.3、A【解析】

由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點(diǎn)D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點(diǎn)E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點(diǎn)D的平面截球O所得截面圓的最小半徑為所以過點(diǎn)D的平面截球O所得截面的最小面積為故選:A【點(diǎn)睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.4、C【解析】

作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系6、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【點(diǎn)睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.7、B【解析】

由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計(jì)算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.8、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來,繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.9、D【解析】

化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.10、A【解析】

先求的展開式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開式的常數(shù)項(xiàng),從而求出的值.【詳解】展開式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開式中的系數(shù)問題,其中對(duì)所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.11、A【解析】

根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點(diǎn)睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.12、C【解析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項(xiàng)和前項(xiàng)和,根據(jù)后兩個(gè)公式可得正確的選項(xiàng).【詳解】因?yàn)闉榈缺葦?shù)列,所以,故即,由可得或,因?yàn)闉檫f增數(shù)列,故符合.此時(shí),所以或(舍,因?yàn)闉檫f增數(shù)列).故,.故選C.【點(diǎn)睛】一般地,如果為等比數(shù)列,為其前項(xiàng)和,則有性質(zhì):(1)若,則;(2)公比時(shí),則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),可表示出,由三棱錐性質(zhì)得這三條棱長(zhǎng)的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設(shè)則,由兩兩垂直知三棱錐的三條棱的棱長(zhǎng)的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當(dāng)時(shí),.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和.14、【解析】

利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點(diǎn)睛】本題考查利用正弦定理實(shí)現(xiàn)邊角互化,屬基礎(chǔ)題.15、.【解析】

當(dāng)q=1時(shí),.當(dāng)時(shí),,所以.16、【解析】

化簡(jiǎn)得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計(jì)算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時(shí)等號(hào)成立,故.故答案為:.【點(diǎn)睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)增區(qū)間為,減區(qū)間為;(2).【解析】

(1)由題意利用三角函數(shù)圖象變換規(guī)律求得的解析式,然后利用余弦函數(shù)的單調(diào)性,得出結(jié)論;(2)由題意利用余弦函數(shù)的圖象的對(duì)稱性求得,再根據(jù)余弦函數(shù)的定義域和值域,得出結(jié)論.【詳解】由題意得(1)向左平移個(gè)單位得到,增區(qū)間:解不等式,解得,減區(qū)間:解不等式,解得.綜上可得,的單調(diào)增區(qū)間為,減區(qū)間為;(2)由題易知,,因?yàn)榈囊粭l對(duì)稱軸是,所以,,解得,.又因?yàn)?,所以,?因?yàn)?,所以,則,所以在的值域是.【點(diǎn)睛】本題主要考查三角函數(shù)圖象變換規(guī)律,余弦函數(shù)圖象的對(duì)稱性,余弦函數(shù)的單調(diào)性和值域,屬于中檔題.18、(1)分布列見解析;(2)①;②,.【解析】

(1)經(jīng)過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨(dú)立,計(jì)算概率后可得分布列;(2)由(1)得,由兩輪的得分可計(jì)算出,計(jì)算時(shí)可先計(jì)算出經(jīng)過2輪后甲的得分的分布列(的取值為),然后結(jié)合的分布列和的分布可計(jì)算,由,代入,得兩個(gè)方程,解得,從而得到數(shù)列的遞推式,變形后得是等比數(shù)列,由等比數(shù)列通項(xiàng)公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨(dú)立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經(jīng)過2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數(shù)列是等比數(shù)列,公比為,首項(xiàng)為,∴.∴.【點(diǎn)睛】本題考查隨機(jī)變量的概率分布列,考查相互獨(dú)立事件同時(shí)發(fā)生的概率,考查由數(shù)列的遞推式求通項(xiàng)公式,考查學(xué)生的轉(zhuǎn)化與化歸思想,本題難點(diǎn)在于求概率分布列,特別是經(jīng)過2輪投球后甲的得分的概率分布列,這里可用列舉法寫出各種可能,然后由獨(dú)立事件的概率公式計(jì)算出概率.19、(1)(2);時(shí),取得最小值【解析】

(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項(xiàng)公式為(2)由(1)知時(shí),取得最小值.【點(diǎn)睛】本題解題關(guān)鍵是掌握等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.20、(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,其中參數(shù)的絕對(duì)值表示直線上對(duì)應(yīng)點(diǎn)到的距離,因此有,,直接由韋達(dá)定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關(guān)系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為,將代入圓的極坐標(biāo)方程中,可得圓的普通方程為,(2)解:直線的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因?yàn)榉匠蹋?)有兩個(gè)不同的實(shí)根,所以,即,又,所以.因?yàn)?,所以所?點(diǎn)睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標(biāo)方程與直角坐標(biāo)方程互化一般利用公式;(3)過的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點(diǎn)對(duì)應(yīng)參數(shù),則.21、(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)設(shè),則,利用在圓上得到滿足的方程,最后利用韋達(dá)定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標(biāo)方程可化為.把,代入曲線的極坐標(biāo)方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.∵曲線與直線相交于不同的兩點(diǎn),∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論