版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆山東德州市高三第一次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.62.已知,,,則a,b,c的大小關(guān)系為()A. B. C. D.3.已知向量,且,則m=()A.?8 B.?6C.6 D.84.國家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%5.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費(fèi)開支占總開支的百分比為()A. B. C. D.6.設(shè)是定義在實(shí)數(shù)集上的函數(shù),滿足條件是偶函數(shù),且當(dāng)時(shí),,則,,的大小關(guān)系是()A. B. C. D.7.如圖1,《九章算術(shù)》中記載了一個(gè)“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.8.大衍數(shù)列,米源于我國古代文獻(xiàn)《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.9.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.10.已知實(shí)數(shù)滿足不等式組,則的最小值為()A. B. C. D.11.已知函數(shù)且,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.設(shè)拋物線的焦點(diǎn)為F,拋物線C與圓交于M,N兩點(diǎn),若,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)()的圖象與直線相切,則______.14.已知一個(gè)正四棱錐的側(cè)棱與底面所成的角為,側(cè)面積為,則該棱錐的體積為__________.15.已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為.16.設(shè)為拋物線的焦點(diǎn),為上互相不重合的三點(diǎn),且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若函數(shù)在處取得極值1,證明:(2)若恒成立,求實(shí)數(shù)的取值范圍.18.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點(diǎn).(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.19.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若對(duì)任意恒成立,求的取值范圍.21.(12分)一張邊長為的正方形薄鋁板(圖甲),點(diǎn),分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開,再將沿折疊,沿折疊,使,重合,且重合于點(diǎn),制作成一個(gè)無蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計(jì))(1)若裁開的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無蓋三棱錐容器的容積最大.22.(10分)某機(jī)構(gòu)組織的家庭教育活動(dòng)上有一個(gè)游戲,每次由一個(gè)小孩與其一位家長參與,測試家長對(duì)小孩飲食習(xí)慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的喜愛程度對(duì)其排序,然后由家長猜測小孩的排序結(jié)果.設(shè)小孩對(duì)四種食物排除的序號(hào)依次為xAxBxCxD,家長猜測的序號(hào)依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個(gè)數(shù)字的一種排列.定義隨機(jī)變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對(duì)小孩飲食習(xí)慣的了解程度.(1)若參與游戲的家長對(duì)小孩的飲食習(xí)慣完全不了解.(ⅰ)求他們?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細(xì)計(jì)算過程);(2)若有一組小孩和家長進(jìn)行來三輪游戲,三輪的結(jié)果都滿足X<4,請(qǐng)判斷這位家長對(duì)小孩飲食習(xí)慣是否了解,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點(diǎn)睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.2、D【解析】
與中間值1比較,可用換底公式化為同底數(shù)對(duì)數(shù),再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點(diǎn)睛】本題考查冪和對(duì)數(shù)的大小比較,解題時(shí)能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對(duì)數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較.3、D【解析】
由已知向量的坐標(biāo)求出的坐標(biāo),再由向量垂直的坐標(biāo)運(yùn)算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算,考查向量垂直的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.4、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對(duì)A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對(duì)B,由圖可以看出,PMI值的平均值低于50%,故B正確;對(duì)C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對(duì)D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.5、A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計(jì)算出水費(fèi)開支占水、電、交通開支的比例,相乘即可求出水費(fèi)開支占總開支的百分比.【詳解】水費(fèi)開支占總開支的百分比為.故選:A【點(diǎn)睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.6、C【解析】∵y=f(x+1)是偶函數(shù),∴f(-x+1)=f(x+1),即函數(shù)f(x)關(guān)于x=1對(duì)稱.
∵當(dāng)x≥1時(shí),為減函數(shù),∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C7、B【解析】如圖,已知,,
∴,解得
,∴,解得
.∴折斷后的竹干高為4.55尺故選B.8、B【解析】
直接代入檢驗(yàn),排除其中三個(gè)即可.【詳解】由題意,排除D,,排除A,C.同時(shí)B也滿足,,,故選:B.【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時(shí)可代入檢驗(yàn),利用排除法求解.9、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、B【解析】
作出約束條件的可行域,在可行域內(nèi)求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實(shí)數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距最小,故,即的最小值為.故選:B【點(diǎn)睛】本題考查了簡單的線性規(guī)劃問題,解題的關(guān)鍵是作出可行域、理解目標(biāo)函數(shù)的意義,屬于基礎(chǔ)題.11、B【解析】
構(gòu)造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構(gòu)造函數(shù),由解得,所以的定義域?yàn)?,且,所以為奇函?shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.12、B【解析】
由圓過原點(diǎn),知中有一點(diǎn)與原點(diǎn)重合,作出圖形,由,,得,從而直線傾斜角為,寫出點(diǎn)坐標(biāo),代入拋物線方程求出參數(shù),可得點(diǎn)坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點(diǎn),所以原點(diǎn)是圓與拋物線的一個(gè)交點(diǎn),不妨設(shè)為,如圖,由于,,∴,∴,,∴點(diǎn)坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.【點(diǎn)睛】本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點(diǎn)是其中一個(gè)交點(diǎn),從而是等腰直角三角形,于是可得點(diǎn)坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點(diǎn),恐怕難度會(huì)大大增加,甚至沒法求解.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
設(shè)切點(diǎn)由已知可得,即可解得所求.【詳解】設(shè),因?yàn)?,所以,即,又?所以,即,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,難度較易.14、【解析】
如圖所示,正四棱錐,為底面的中心,點(diǎn)為的中點(diǎn),則,設(shè),根據(jù)正四棱錐的側(cè)面積求出的值,再利用勾股定理求得正四棱錐的高,代入體積公式,即可得到答案.【詳解】如圖所示,正四棱錐,為底面的中心,點(diǎn)為的中點(diǎn),則,設(shè),,,,,,.故答案為:.【點(diǎn)睛】本題考查棱錐的側(cè)面積和體積,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.15、【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.16、或【解析】
設(shè)出三點(diǎn)的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進(jìn)行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因?yàn)?、、成等差?shù)列,所以有,所以,因?yàn)榫€段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點(diǎn)睛】本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),由在處取得極值1,可得且.解出,構(gòu)造函數(shù),分析其單調(diào)性,結(jié)合,即可得到的范圍,命題得證;
(2)由分離參數(shù),得到恒成立,構(gòu)造函數(shù),求導(dǎo)函數(shù),再構(gòu)造函數(shù),進(jìn)行二次求導(dǎo).由知,則在上單調(diào)遞增.根據(jù)零點(diǎn)存在定理可知有唯一零點(diǎn),且.由此判斷出時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,則,即.由得,再次構(gòu)造函數(shù),求導(dǎo)分析單調(diào)性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數(shù)在,處取得極值1,,且,,,令,則為增函數(shù),,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調(diào)遞增,且,有唯一零點(diǎn),且,當(dāng)時(shí),,,單調(diào)遞減;當(dāng)時(shí),,,單調(diào)遞增.,由整理得,令,則方程等價(jià)于而在上恒大于零,在上單調(diào)遞增,.,∴實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了函數(shù)的極值,利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,函數(shù)的零點(diǎn)存在定理,證明不等式,解決不等式恒成立問題.其中多次構(gòu)造函數(shù),是解題的關(guān)鍵,屬于綜合性很強(qiáng)的難題.18、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性質(zhì)得出,由平面得出,進(jìn)而可推導(dǎo)出平面,再利用面面垂直的判定定理可證得結(jié)論;(Ⅱ)取的中點(diǎn),連接、,以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點(diǎn),連接、,是正方形,易知、、兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),以、、所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,在中,,,,、、、,設(shè)平面的一個(gè)法向量,,,由,得,令,則,,.設(shè)平面的一個(gè)法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點(diǎn)睛】本題考查面面垂直的證明,同時(shí)也考查了利用空間向量法求解二面角,考查推理能力與計(jì)算能力,屬于中等題.19、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項(xiàng)公式為an=n+1.(2)設(shè)的前n項(xiàng)和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點(diǎn)晴】本題主要考查了等差數(shù)列的通項(xiàng)公式、“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式、一元二次方程的解法等知識(shí)點(diǎn)的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項(xiàng)公式,進(jìn)而利用錯(cuò)位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運(yùn)算能力,屬于中檔試題.20、(1);(2).【解析】
(1)通過討論的范圍,分為,,三種情形,分別求出不等式的解集即可;(2)通過分離參數(shù)思想問題轉(zhuǎn)化為,根據(jù)絕對(duì)值不等式的性質(zhì)求出最值即可得到的范圍.【詳解】(1)當(dāng)時(shí),原不等式等價(jià)于,解得,所以,當(dāng)時(shí),原不等式等價(jià)于,解得,所以此時(shí)不等式無解,當(dāng)時(shí),原不等式等價(jià)于,解得,所以綜上所述,不等式解集為.(2)由,得,當(dāng)時(shí),恒成立,所以;當(dāng)時(shí),.因?yàn)楫?dāng)且僅當(dāng)即或時(shí),等號(hào)成立,所以;綜上的取值范圍是.【點(diǎn)睛】本題考查了解絕對(duì)值不等式問題,考查絕對(duì)值不等式的性質(zhì)以及分類討論思想,轉(zhuǎn)化思想,屬于中檔題.21、(1),;(2)當(dāng)值為時(shí),無蓋三棱錐容器的容積最大.【解析】
(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時(shí),,當(dāng),時(shí),,當(dāng)時(shí),有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時(shí),取得最大值,無蓋三棱錐容器的容積最大.答:當(dāng)值為時(shí),無蓋三棱錐容器的容積最大.【點(diǎn)睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.22、(1)(?。áⅲ┓植急硪娊馕觯唬?)理由見解析【解析】
(1)(i)若家長對(duì)小孩子的飲食習(xí)慣完全不了解,則家長對(duì)小孩的排序是隨意猜測的,家長的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長的排序與對(duì)應(yīng)位置的數(shù)字完全不同”的情況有9種,由此能求出他們?cè)谝惠営螒蛑?,?duì)四種食物排出的序號(hào)完全不同的概率.
(ii)根據(jù)(i)的分析,同樣只考慮小孩排序?yàn)?234的情況,家長的排序一共有24種情況,由此能求出X的分布列.
(2)假設(shè)家長對(duì)小孩的飲食習(xí)慣完全不了解,在一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人康復(fù)理療師考核獎(jiǎng)懲制度
- 【地球課件】地基基礎(chǔ)設(shè)計(jì)理論與荷載
- 九年級(jí)歷史期末試卷答題卡-教案課件-初中歷史九年級(jí)上冊(cè)部編版
- 房屋租賃的合同(2篇)
- 《食品安全和營養(yǎng)》課件
- 2025年拉薩貨運(yùn)從業(yè)資格證模擬試題題庫及答案大全
- 2025年揚(yáng)州貨運(yùn)從業(yè)資格證考些什么內(nèi)容
- 2024年土地承包合同終止后的土地經(jīng)營權(quán)租賃協(xié)議6篇
- 中國古代禮儀文明課件-婚禮
- 2025年沈陽經(jīng)營性道路客貨運(yùn)輸駕駛員從業(yè)資格考試
- 非新生兒破傷風(fēng)診療
- 建筑施工企業(yè)八大員繼續(xù)教育模擬考試題庫500題(含標(biāo)準(zhǔn)答案)
- 三級(jí)綜合醫(yī)院評(píng)審標(biāo)準(zhǔn)(2024年版)
- 眾創(chuàng)空間運(yùn)營管理實(shí)施方案
- 2024智慧城市數(shù)據(jù)采集標(biāo)準(zhǔn)規(guī)范
- 云南省2022年中考道德與法治真題試卷
- 業(yè)委會(huì)解除小區(qū)物業(yè)服務(wù)合同的函
- Unit 7 Be wise with money(教學(xué)設(shè)計(jì))2024-2025學(xué)年譯林版英語七年級(jí)上冊(cè)
- 2024-2025學(xué)年北京市海淀區(qū)數(shù)學(xué)三上期末教學(xué)質(zhì)量檢測試題含解析
- 車位進(jìn)行特許權(quán)經(jīng)營服務(wù)投標(biāo)方案(技術(shù)方案)
- 8《美麗文字 民族瑰寶》教學(xué)設(shè)計(jì)2023-2024學(xué)年統(tǒng)編版道德與法治五年級(jí)上冊(cè)
評(píng)論
0/150
提交評(píng)論