版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省望奎縣第二中學(xué)2025屆高考考前模擬數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.2.已知復(fù)數(shù),滿足,則()A.1 B. C. D.53.給出下列四個(gè)命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個(gè)數(shù)是()A. B. C. D.4.過(guò)雙曲線的右焦點(diǎn)F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過(guò)雙曲線C的左頂點(diǎn),則雙曲線C的離心率為()A. B. C.2 D.5.復(fù)數(shù)().A. B. C. D.6.過(guò)拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則()A. B. C. D.7.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要8.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.9.已知函數(shù)若恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.若直線的傾斜角為,則的值為()A. B. C. D.11.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-212.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,是圓的直徑,弦的延長(zhǎng)線相交于點(diǎn)垂直的延長(zhǎng)線于點(diǎn).求證:14.如圖,機(jī)器人亮亮沿著單位網(wǎng)格,從地移動(dòng)到地,每次只移動(dòng)一個(gè)單位長(zhǎng)度,則亮亮從移動(dòng)到最近的走法共有____種.15.已知實(shí)數(shù),滿足則的取值范圍是______.16.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.18.(12分)設(shè)直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿足?并說(shuō)明理由.19.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.20.(12分)△ABC的內(nèi)角的對(duì)邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長(zhǎng).21.(12分)已知拋物線:的焦點(diǎn)為,過(guò)上一點(diǎn)()作兩條傾斜角互補(bǔ)的直線分別與交于,兩點(diǎn),(1)證明:直線的斜率是-1;(2)若,,成等比數(shù)列,求直線的方程.22.(10分)已知公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長(zhǎng)為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.2、A【解析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運(yùn)算求出,求出的模即可.【詳解】解:,,故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)求模問(wèn)題,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.3、B【解析】
①利用真假表來(lái)判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個(gè)是假命題,故①錯(cuò)誤;當(dāng)內(nèi)角為時(shí),不是象限角,故②錯(cuò)誤;由特稱命題的否定是全稱命題知③正確;因?yàn)?,所以,所以“”是“”的必要條件,故④正確.故選:B.【點(diǎn)睛】本題考查命題真假的問(wèn)題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識(shí),是一道基礎(chǔ)題.4、C【解析】
由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)椋訤是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過(guò)雙曲線C的左頂點(diǎn),所以,即,則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題.5、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.6、C【解析】
作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.7、B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出?!驹斀狻吭O(shè)對(duì)應(yīng)的集合是,由解得且對(duì)應(yīng)的集合是,所以,故是的必要不充分條件,故選B。【點(diǎn)睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。8、A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點(diǎn)睛】本題考查利用定義計(jì)算條件概率的問(wèn)題,涉及到雙曲線的定義,是一道容易題.9、D【解析】
由恒成立,等價(jià)于的圖像在的圖像的上方,然后作出兩個(gè)函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因?yàn)橛珊愠闪?,分別作出及的圖象,由圖知,當(dāng)時(shí),不符合題意,只須考慮的情形,當(dāng)與圖象相切于時(shí),由導(dǎo)數(shù)幾何意義,此時(shí),故.故選:D【點(diǎn)睛】此題考查的是函數(shù)中恒成立問(wèn)題,利用了數(shù)形結(jié)合的思想,屬于難題.10、B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡(jiǎn),再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點(diǎn)睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.11、B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問(wèn)題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來(lái)求解,考查理解能力和計(jì)算能力,屬于中等題.12、D【解析】
易知單調(diào)遞增,由可得唯一零點(diǎn),通過(guò)已知可求得,則問(wèn)題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡(jiǎn)可得,借助對(duì)號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問(wèn)題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對(duì)勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)椋?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問(wèn)題,考查了方程有解問(wèn)題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對(duì)勾函數(shù)”求參數(shù)取值范圍問(wèn)題,難度較難.二、填空題:本題共4小題,每小題5分,共20分。13、證明見解析.【解析】試題分析:四點(diǎn)共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因?yàn)闉閳A的直徑,所以,又,則四點(diǎn)共圓,所以.又△∽△,所以,即,∴.14、【解析】
分三步來(lái)考查,先從到,再?gòu)牡剑詈髲牡?,分別計(jì)算出三個(gè)步驟中對(duì)應(yīng)的走法種數(shù),然后利用分步乘法計(jì)數(shù)原理可得出結(jié)果.【詳解】分三步來(lái)考查:①?gòu)牡?,則亮亮要移動(dòng)兩步,一步是向右移動(dòng)一個(gè)單位,一步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;②從到,則亮亮要移動(dòng)六步,其中三步是向右移動(dòng)一個(gè)單位,三步是向上移動(dòng)一個(gè)單位,此時(shí)有種走法;③從到,由①可知有種走法.由分步乘法計(jì)數(shù)原理可知,共有種不同的走法.故答案為:.【點(diǎn)睛】本題考查格點(diǎn)問(wèn)題的處理,考查分步乘法計(jì)數(shù)原理和組合計(jì)數(shù)原理的應(yīng)用,屬于中等題.15、【解析】
根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個(gè)位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個(gè)交點(diǎn)分別為,所以的取值范圍為.故答案為:【點(diǎn)睛】本題考查了非線性約束條件下線性規(guī)劃的簡(jiǎn)單應(yīng)用,由數(shù)形結(jié)合法求線性目標(biāo)函數(shù)的取值范圍,屬于中檔題.16、.【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(Ⅱ)見證明【解析】
(Ⅰ)求導(dǎo)得,由是減函數(shù)得,對(duì)任意的,都有恒成立,構(gòu)造函數(shù),通過(guò)求導(dǎo)判斷它的單調(diào)性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數(shù),且可得,當(dāng)時(shí),,則,即,兩邊同除以得,,即,從而,兩邊取對(duì)數(shù),然后再證明恒成立即可,構(gòu)造函數(shù),,通過(guò)求導(dǎo)證明即可.【詳解】解:(Ⅰ)的定義域?yàn)椋?由是減函數(shù)得,對(duì)任意的,都有恒成立.設(shè).∵,由知,∴當(dāng)時(shí),;當(dāng)時(shí),,∴在上單調(diào)遞增,在上單調(diào)遞減,∴在時(shí)取得最大值.又∵,∴對(duì)任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數(shù),且可得,當(dāng)時(shí),,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調(diào)遞增,∴在上單調(diào)遞減,而,∴當(dāng)時(shí),恒成立,∴在上單調(diào)遞減,即時(shí),,∴當(dāng)時(shí),.∵,∴當(dāng)時(shí),,即②.綜上①②可得,.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系,考查了函數(shù)的最值,考查了構(gòu)造函數(shù)的能力,考查了邏輯推理能力與計(jì)算求解能力,屬于難題.,18、(1)證明見解析(0,2);(2)存在,理由見解析【解析】
(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過(guò)定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡(jiǎn)即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過(guò)原點(diǎn),故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過(guò)定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿足題意.【點(diǎn)睛】本題主要考查了直線與拋物線、橢圓的位置關(guān)系,直線過(guò)定點(diǎn)問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.19、(1)整數(shù)的最大值為;(2)見解析.【解析】
(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對(duì)恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題.20、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長(zhǎng)為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長(zhǎng)為.點(diǎn)睛:在處理解三角形問(wèn)題時(shí),要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問(wèn)題常見的一種考題是“已知一條邊的長(zhǎng)度和它所對(duì)的角,求面積或周長(zhǎng)的取值范圍”或者“已知一條邊的長(zhǎng)度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長(zhǎng)的值”,這類問(wèn)題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.21、(1)見解析;(2)【解析】
(1)設(shè),,由已知,得,代入中即可;(2)利用拋物線的定義將轉(zhuǎn)化為,再利用韋達(dá)定理計(jì)算.【詳解】(1)在拋物線上,∴,設(shè),,由題可知,,∴,∴,∴,∴,∴(2)由(1)問(wèn)可設(shè)::,則,,,∴,∴,即(*),將直線與拋物線聯(lián)立,可得:,所以,代入(*)式,可得滿足,∴:.【點(diǎn)睛】本題考查直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教師培訓(xùn)課件:高中新課程與音樂(lè)課程標(biāo)準(zhǔn)
- 盆腔淤血綜合征的健康宣教
- 八年級(jí)英語(yǔ)FriendsGrammar課件
- 《C語(yǔ)言程序設(shè)計(jì)d》課件-第四講-函數(shù)
- 特發(fā)性腹膜后纖維化的健康宣教
- 瘰疬分枝桿菌感染的臨床護(hù)理
- 慢性纖維性甲狀腺炎的臨床護(hù)理
- 中華優(yōu)xiu傳統(tǒng)文化(山東經(jīng)貿(mào)職業(yè)學(xué)院)知到智慧樹答案
- 《數(shù)據(jù)處理及誤差》課件
- 運(yùn)營(yíng)管理團(tuán)隊(duì)協(xié)作培訓(xùn)
- 上海市中小學(xué)特殊學(xué)生隨班就讀個(gè)別化教學(xué)計(jì)劃一
- 2021年消防繼續(xù)教育題目和答案2021年消防繼續(xù)教育題庫(kù)完整版
- 化妝造型期末考試試卷試題及答案
- 南京大學(xué)簡(jiǎn)介PPT模板
- 第四節(jié)支原體、立克次氏體、衣原體
- (完整)主要物資、施工機(jī)械設(shè)備及勞動(dòng)力進(jìn)場(chǎng)計(jì)劃
- 配網(wǎng)工程施工工藝示范手冊(cè)-全
- 國(guó)民體質(zhì)監(jiān)測(cè)
- 變形監(jiān)測(cè)試題庫(kù)
- 高速鐵路路基堆載預(yù)壓施工方案
- 紅外光譜(課堂PPT)
評(píng)論
0/150
提交評(píng)論