版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省株洲市攸縣三中2025屆高三沖刺模擬數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.2.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.3.設(shè)分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.4.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設(shè)二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數(shù)是()A.1 B.2 C.3 D.45.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.86.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣27.已知是等差數(shù)列的前項和,若,設(shè),則數(shù)列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.20178.已知函數(shù),若關(guān)于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.89.如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.10.設(shè)為坐標(biāo)原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.111.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.12.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機(jī)等可能取出小球,當(dāng)有放回依次取出兩個小球時,記取出的紅球數(shù)為;當(dāng)無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在正四棱柱中,P是側(cè)棱上一點,且.設(shè)三棱錐的體積為,正四棱柱的體積為V,則的值為________.14.已知函數(shù),則________;滿足的的取值范圍為________.15.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.16.已知f(x)為偶函數(shù),當(dāng)x≤0時,f(x)=e-x-1-x,則曲線y=f(x)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以為極點,軸正半軸為極軸的極坐標(biāo)中,曲線:.(1)當(dāng)時,求與的交點的極坐標(biāo);(2)直線與曲線交于,兩點,線段中點為,求的值.18.(12分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的最大值.19.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學(xué)校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.20.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,以橢圓C左頂點T為圓心作圓,設(shè)圓T與橢圓C交于點M與點N.(1)求橢圓C的方程;(2)求的最小值,并求此時圓T的方程;(3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標(biāo)原點,求證:為定值.21.(12分)已知函數(shù),.(1)當(dāng)時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當(dāng)時,若對時,,且有唯一零點,證明:.22.(10分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
用排除法,通過函數(shù)圖像的性質(zhì)逐個選項進(jìn)行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設(shè),由于,排除B選項;由于,所以,排除C選項;由于當(dāng)時,,排除D選項.故A選項正確.故選:A【點睛】本題考查了函數(shù)圖像的性質(zhì),屬于中檔題.2、D【解析】
根據(jù)為等腰三角形,可求出點P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.3、A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.4、C【解析】
解:對于(1),當(dāng)CD⊥平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當(dāng)CD⊥平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進(jìn)一步可得AE=DE,此時E﹣ABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對于(4)AE的中點M與AB的中點N連線交平面BCD于點P,P到BC的距離為:dP﹣BC,因為<1,所以點P的軌跡為橢圓.(4)正確.故選:C.點睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對應(yīng)的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過程中,需要認(rèn)真分析,得到結(jié)果,注意對知識點的靈活運用.5、B【解析】
利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎(chǔ)題.6、D【解析】
化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復(fù)數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎(chǔ)題.7、B【解析】
根據(jù)題意計算,,,計算,,,得到答案.【詳解】是等差數(shù)列的前項和,若,故,,,,故,當(dāng)時,,,,,當(dāng)時,,故前項和最大.故選:.【點睛】本題考查了數(shù)列和的最值問題,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.8、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時,,由于關(guān)于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時,,則不滿足題意;當(dāng)時,當(dāng)時,,沒有整數(shù)解當(dāng)時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.9、D【解析】
由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.10、C【解析】試題分析:設(shè),由題意,顯然時不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時取等號,故選C.考點:1.拋物線的簡單幾何性質(zhì);2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.11、A【解析】
結(jié)合復(fù)數(shù)的除法運算和模長公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點睛】本題考查復(fù)數(shù)的除法、模長、平方運算,屬于基礎(chǔ)題12、B【解析】
分別求出兩個隨機(jī)變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機(jī)變量的分布列的計算,應(yīng)先確定隨機(jī)變量所有可能的取值,再利用排列組合知識求出隨機(jī)變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)正四棱柱的底面邊長,高,再根據(jù)柱體、錐體的體積公式計算可得.【詳解】解:設(shè)正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎(chǔ)題.14、【解析】
首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當(dāng)時,滿足題意,∴;當(dāng)時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數(shù)的性質(zhì)的應(yīng)用,分類討論思想,屬于基礎(chǔ)題.15、【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.16、y=2x【解析】試題分析:當(dāng)x>0時,-x<0,則f(-x)=ex-1+x.又因為f(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當(dāng)x>0時,函數(shù)y=f(x),則當(dāng)x<0時,求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時,函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】
(1)依題意可知,直線的極坐標(biāo)方程為(),再對分三種情況考慮;(2)利用直線參數(shù)方程參數(shù)的幾何意義,求弦長即可得到答案.【詳解】(1)依題意可知,直線的極坐標(biāo)方程為(),當(dāng)時,聯(lián)立解得交點,當(dāng)時,經(jīng)檢驗滿足兩方程,(易漏解之處忽略的情況)當(dāng)時,無交點;綜上,曲線與直線的點極坐標(biāo)為,,(2)把直線的參數(shù)方程代入曲線,得,可知,,所以.【點睛】本題考查直線與曲線交點的極坐標(biāo)、利用參數(shù)方程參數(shù)的幾何意義求弦長,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力.18、(1);(2)4【解析】
(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉(zhuǎn)化原不等式為:,利用均值不等式即得解.【詳解】(1)當(dāng)時不等式可化為當(dāng)時,不等式可化為;當(dāng)時,不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當(dāng)且僅當(dāng):,即,即時等號成立∴,綜上實數(shù)最大值為4.【點睛】本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.19、(1);(2)分布列見解析,期望為.【解析】
(1)甲同學(xué)至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳解】(1)令“甲同學(xué)至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點睛】本題考查古典概型,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.解題關(guān)鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.20、(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點與點關(guān)于軸對稱,設(shè),,設(shè),由于點在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設(shè),則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點與點關(guān)于軸對稱,設(shè),,設(shè),由于點在橢圓C上,所以,由,則,.由于,故當(dāng)時,的最小值為,所以,故,又點在圓T上,代入圓的方程得到.故圓T的方程為:(3)設(shè),則直線MP的方程為:,令,得,同理:.故又點與點在橢圓上,故,代入上式得:,所以【點睛】本題考查了橢圓的幾何性質(zhì)、圓的軌跡方程、直線與橢圓的位置關(guān)系中定值問題,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《高層分析》課件
- 杭電電子設(shè)計課件驅(qū)動電路設(shè)計
- 道路運輸設(shè)備承攬合同三篇
- 主題教育活動的創(chuàng)新設(shè)計計劃
- WS-1紙張濕強劑相關(guān)行業(yè)投資規(guī)劃報告范本
- PMMA再生料相關(guān)行業(yè)投資方案
- 幼兒園心理健康宣傳計劃
- 創(chuàng)造性思維下的新年目標(biāo)計劃
- 學(xué)校秋季環(huán)境美化活動計劃
- 如何處理復(fù)雜的財務(wù)事務(wù)計劃
- 小學(xué)科學(xué)蘇教版五年級上冊全冊知識點(2022新版)
- 第一單元(單元測試)-2024-2025學(xué)年三年級上冊道德與法治 統(tǒng)編版
- 冀教版四年級上冊數(shù)學(xué)計算題大全1000道帶答案
- 新零售部工作手冊
- 校園文明值周總結(jié)
- 2024年“農(nóng)業(yè)經(jīng)理人”職業(yè)技能大賽考試題庫500題(含答案)
- 省級“雙減”大單元作業(yè)設(shè)計四年級道德與法治上冊第二單元作業(yè)
- 《新媒體經(jīng)典案例分析》題集(附答案)
- 專題19與圓有關(guān)的最值問題12種常見考法歸類(原卷版)
- 五年級上冊數(shù)學(xué)說課稿《第4單元:第1課時 體驗事件發(fā)生的確定性和不確定性》人教新課標(biāo)
- 5互聯(lián)網(wǎng)中信息獲取 教學(xué)設(shè)計 2023-2024學(xué)年蘇科版(2023)初中信息技術(shù)七年級上冊
評論
0/150
提交評論