陜西能源職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
陜西能源職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
陜西能源職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
陜西能源職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
陜西能源職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)陜西能源職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與機(jī)器學(xué)習(xí)》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能在能源管理領(lǐng)域有潛在應(yīng)用。假設(shè)一個(gè)智能電網(wǎng)要利用人工智能優(yōu)化電力分配,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析用戶用電模式和需求,實(shí)現(xiàn)精準(zhǔn)的電力調(diào)度B.預(yù)測(cè)電力負(fù)荷變化,提前做好發(fā)電和儲(chǔ)能規(guī)劃C.人工智能可以完全自主地管理電網(wǎng),不需要人工干預(yù)和調(diào)控D.考慮可再生能源的波動(dòng)性,優(yōu)化能源組合,提高電網(wǎng)穩(wěn)定性2、在人工智能的發(fā)展中,模型壓縮和優(yōu)化技術(shù)有助于在資源受限的設(shè)備上部署模型。假設(shè)要將一個(gè)大型的人工智能模型部署到移動(dòng)設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的描述,哪一項(xiàng)是不正確的?()A.可以采用剪枝、量化等方法減少模型的參數(shù)數(shù)量和計(jì)算量B.模型壓縮可能會(huì)導(dǎo)致一定程度的性能損失,但可以通過(guò)優(yōu)化算法來(lái)彌補(bǔ)C.模型壓縮和優(yōu)化只適用于深度學(xué)習(xí)模型,對(duì)傳統(tǒng)機(jī)器學(xué)習(xí)模型無(wú)效D.需要在模型性能和資源消耗之間進(jìn)行平衡,找到最優(yōu)的解決方案3、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開(kāi)發(fā)一個(gè)系統(tǒng)來(lái)監(jiān)測(cè)農(nóng)田中的病蟲(chóng)害情況,需要能夠準(zhǔn)確識(shí)別病蟲(chóng)害的類型和嚴(yán)重程度。以下哪種圖像分析技術(shù)和機(jī)器學(xué)習(xí)算法的組合在這個(gè)任務(wù)中最為有效?()A.圖像分割技術(shù)結(jié)合決策樹(shù)算法B.目標(biāo)檢測(cè)技術(shù)結(jié)合支持向量機(jī)算法C.特征提取技術(shù)結(jié)合樸素貝葉斯算法D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)合隨機(jī)森林算法4、在人工智能的研究中,模型的評(píng)估指標(biāo)對(duì)于衡量模型性能非常重要。假設(shè)要評(píng)估一個(gè)圖像分類模型的性能。以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是常用的評(píng)估指標(biāo)之一,表示正確分類的樣本比例B.召回率衡量了模型能夠正確識(shí)別正例的能力C.F1分?jǐn)?shù)綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中一定表現(xiàn)良好5、在人工智能的智能客服應(yīng)用中,需要快速準(zhǔn)確地回答用戶的問(wèn)題。假設(shè)用戶的問(wèn)題類型多樣,包括咨詢、投訴、技術(shù)問(wèn)題等。為了提高智能客服的回答質(zhì)量和效率,以下哪種技術(shù)或策略是重要的?()A.建立大規(guī)模的問(wèn)題庫(kù)和標(biāo)準(zhǔn)答案B.運(yùn)用自然語(yǔ)言生成技術(shù)生成回答C.引導(dǎo)用戶提出更簡(jiǎn)單的問(wèn)題D.對(duì)復(fù)雜問(wèn)題直接拒絕回答6、機(jī)器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見(jiàn)的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對(duì)應(yīng)的期望輸出B.常見(jiàn)的監(jiān)督學(xué)習(xí)算法包括決策樹(shù)、支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過(guò)學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對(duì)新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測(cè)或分類D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對(duì)于文本、圖像等非數(shù)值型數(shù)據(jù)無(wú)法處理7、人工智能中的自動(dòng)推理技術(shù)旨在讓計(jì)算機(jī)能夠自動(dòng)進(jìn)行邏輯推理和證明。假設(shè)要開(kāi)發(fā)一個(gè)能夠自動(dòng)解決數(shù)學(xué)定理證明問(wèn)題的系統(tǒng),以下關(guān)于自動(dòng)推理的描述,正確的是:()A.現(xiàn)有的自動(dòng)推理技術(shù)可以輕松解決所有復(fù)雜的數(shù)學(xué)定理證明問(wèn)題B.自動(dòng)推理系統(tǒng)只需要基于固定的推理規(guī)則,不需要學(xué)習(xí)和適應(yīng)新的推理模式C.結(jié)合機(jī)器學(xué)習(xí)和符號(hào)推理的方法,可以提高自動(dòng)推理系統(tǒng)的能力和靈活性D.自動(dòng)推理在人工智能中的應(yīng)用范圍非常有限,沒(méi)有實(shí)際價(jià)值8、人工智能在教育領(lǐng)域的應(yīng)用逐漸增多,例如個(gè)性化學(xué)習(xí)、智能輔導(dǎo)系統(tǒng)等。以下關(guān)于人工智能在教育領(lǐng)域應(yīng)用的說(shuō)法,錯(cuò)誤的是()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),為其提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能在教育領(lǐng)域的應(yīng)用可以完全取代教師的作用,實(shí)現(xiàn)教育的自動(dòng)化D.有助于提高教育的效率和質(zhì)量,但也需要關(guān)注學(xué)生的隱私和數(shù)據(jù)安全問(wèn)題9、人工智能中的知識(shí)圖譜是一種用于整合和表示知識(shí)的結(jié)構(gòu)。假設(shè)我們要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下關(guān)于知識(shí)圖譜的說(shuō)法,哪一項(xiàng)是正確的?()A.知識(shí)圖譜只能表示簡(jiǎn)單的事實(shí)關(guān)系B.構(gòu)建知識(shí)圖譜不需要領(lǐng)域?qū)<业膮⑴cC.可以通過(guò)知識(shí)圖譜進(jìn)行知識(shí)推理和查詢D.知識(shí)圖譜的更新和維護(hù)非常容易10、人工智能中的聯(lián)邦學(xué)習(xí)是一種新興的技術(shù)。假設(shè)多個(gè)機(jī)構(gòu)想要在保護(hù)數(shù)據(jù)隱私的前提下共同訓(xùn)練一個(gè)模型,以下關(guān)于聯(lián)邦學(xué)習(xí)的描述,正確的是:()A.聯(lián)邦學(xué)習(xí)中,各機(jī)構(gòu)的數(shù)據(jù)需要集中到一個(gè)中心服務(wù)器進(jìn)行統(tǒng)一訓(xùn)練B.聯(lián)邦學(xué)習(xí)能夠在不共享原始數(shù)據(jù)的情況下實(shí)現(xiàn)模型的協(xié)同訓(xùn)練C.聯(lián)邦學(xué)習(xí)只適用于小規(guī)模的數(shù)據(jù)和簡(jiǎn)單的模型結(jié)構(gòu)D.聯(lián)邦學(xué)習(xí)過(guò)程中不存在數(shù)據(jù)安全和隱私泄露的風(fēng)險(xiǎn)11、人工智能在智能家居領(lǐng)域的應(yīng)用為人們的生活帶來(lái)了便利。以下關(guān)于人工智能在智能家居應(yīng)用的描述,不準(zhǔn)確的是()A.可以實(shí)現(xiàn)家電的智能控制和自動(dòng)化運(yùn)行,根據(jù)用戶的習(xí)慣和需求進(jìn)行個(gè)性化設(shè)置B.通過(guò)語(yǔ)音指令和智能傳感器,提供便捷的家居服務(wù)和環(huán)境監(jiān)測(cè)C.智能家居中的人工智能系統(tǒng)容易受到網(wǎng)絡(luò)攻擊和數(shù)據(jù)泄露的威脅D.目前智能家居中的人工智能應(yīng)用還處于初級(jí)階段,功能較為單一,無(wú)法滿足用戶的多樣化需求12、人工智能在制造業(yè)中的應(yīng)用可以提高生產(chǎn)效率和產(chǎn)品質(zhì)量。假設(shè)一家工廠使用人工智能進(jìn)行質(zhì)量檢測(cè)。以下關(guān)于人工智能在制造業(yè)中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.通過(guò)機(jī)器視覺(jué)技術(shù)檢測(cè)產(chǎn)品表面的缺陷和瑕疵B.利用數(shù)據(jù)分析預(yù)測(cè)設(shè)備的故障,提前進(jìn)行維護(hù)C.人工智能可以完全自主地優(yōu)化生產(chǎn)流程,無(wú)需人工干預(yù)D.與機(jī)器人技術(shù)結(jié)合,實(shí)現(xiàn)自動(dòng)化生產(chǎn)和裝配13、當(dāng)利用人工智能進(jìn)行智能醫(yī)療影像診斷,例如檢測(cè)腫瘤或病變,以下哪種挑戰(zhàn)和問(wèn)題可能是需要重點(diǎn)解決的?()A.數(shù)據(jù)標(biāo)注的準(zhǔn)確性和一致性B.模型的泛化能力和魯棒性C.結(jié)果的解釋和臨床可接受性D.以上都是14、人工智能在醫(yī)療影像診斷中的輔助作用越來(lái)越受到重視。假設(shè)一個(gè)醫(yī)生正在借助人工智能系統(tǒng)輔助診斷X光片,以下關(guān)于醫(yī)療影像診斷中人工智能的描述,正確的是:()A.人工智能系統(tǒng)的診斷結(jié)果可以完全替代醫(yī)生的判斷,醫(yī)生無(wú)需再進(jìn)行分析B.醫(yī)生應(yīng)該將人工智能系統(tǒng)的診斷結(jié)果作為唯一參考,忽略自己的臨床經(jīng)驗(yàn)C.人工智能系統(tǒng)可以提供輔助信息和提示,幫助醫(yī)生更準(zhǔn)確地診斷,但最終決策仍由醫(yī)生做出D.醫(yī)療影像診斷中的人工智能技術(shù)還不夠成熟,不能為醫(yī)生提供任何有價(jià)值的幫助15、在人工智能的語(yǔ)音識(shí)別任務(wù)中,環(huán)境噪聲和口音的多樣性會(huì)影響識(shí)別效果。假設(shè)要開(kāi)發(fā)一個(gè)能夠在嘈雜環(huán)境和多種口音下準(zhǔn)確識(shí)別語(yǔ)音的系統(tǒng),以下哪種技術(shù)或方法在提高系統(tǒng)的適應(yīng)性方面最為關(guān)鍵?()A.聲學(xué)模型的優(yōu)化B.語(yǔ)言模型的融合C.多模態(tài)信息的利用D.以上方法結(jié)合使用二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述邊緣計(jì)算與人工智能的融合。2、(本題5分)簡(jiǎn)述人工智能在智能客服中的實(shí)現(xiàn)方式。3、(本題5分)談?wù)勅斯ぶ悄茉谟螒蜷_(kāi)發(fā)中的應(yīng)用。4、(本題5分)簡(jiǎn)述準(zhǔn)確率、召回率和F1值的計(jì)算和應(yīng)用。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用自然語(yǔ)言生成技術(shù),為智能寫作助手生成文章的開(kāi)頭、結(jié)尾和段落過(guò)渡句。根據(jù)給定的主題和寫作風(fēng)格要求,生成富有創(chuàng)意和連貫性的文本內(nèi)容,評(píng)估生成內(nèi)容的質(zhì)量和與主題的契合度。2、(本題5分)利用Python的TensorFlow庫(kù),構(gòu)建一個(gè)深度信念網(wǎng)絡(luò)(DBN)對(duì)圖像數(shù)據(jù)進(jìn)行特征提取和分類,比較與傳統(tǒng)方法的性能差異。3、(本題5分)使用Python的PyTorch框架,搭建一個(gè)圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)模型,對(duì)社交網(wǎng)絡(luò)中的節(jié)點(diǎn)分類問(wèn)題進(jìn)行處理。分析不同的圖卷積層結(jié)構(gòu)和參數(shù)對(duì)分類效果的影響。4、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于圖神經(jīng)網(wǎng)絡(luò)(GNN)的模型,對(duì)社交網(wǎng)絡(luò)中的關(guān)系進(jìn)行預(yù)測(cè)。研究不同的圖結(jié)構(gòu)和節(jié)點(diǎn)特征對(duì)預(yù)測(cè)結(jié)果的影響。5、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于注意力機(jī)制的文本分類模型,用于區(qū)分不同類型的新聞文章,如政治、經(jīng)濟(jì)、體育等。分析注意力權(quán)重在文本中的分布,比較不同注意力機(jī)制對(duì)模型性能的提升效果。四、案

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論